You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_zeroslike_op.py 6.0 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. # Copyright 2019-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _inner_ops as inner
  22. class NetZerosLike(nn.Cell):
  23. def __init__(self):
  24. super(NetZerosLike, self).__init__()
  25. self.zeros_like = P.ZerosLike()
  26. def construct(self, x):
  27. return self.zeros_like(x)
  28. @pytest.mark.level0
  29. @pytest.mark.platform_x86_gpu_training
  30. @pytest.mark.env_onecard
  31. def test_ZerosLike():
  32. x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
  33. x1_np = np.random.uniform(-2, 2, 1).astype(np.float32)
  34. x0 = Tensor(x0_np)
  35. x1 = Tensor(x1_np)
  36. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  37. zeros_like = NetZerosLike()
  38. output0 = zeros_like(x0)
  39. expect0 = np.zeros_like(x0_np)
  40. diff0 = output0.asnumpy() - expect0
  41. error0 = np.ones(shape=expect0.shape) * 1.0e-5
  42. assert np.all(diff0 < error0)
  43. assert output0.shape == expect0.shape
  44. output1 = zeros_like(x1)
  45. expect1 = np.zeros_like(x1_np)
  46. diff1 = output1.asnumpy() - expect1
  47. error1 = np.ones(shape=expect1.shape) * 1.0e-5
  48. assert np.all(diff1 < error1)
  49. assert output1.shape == expect1.shape
  50. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  51. zeros_like = NetZerosLike()
  52. output0 = zeros_like(x0)
  53. expect0 = np.zeros_like(x0_np)
  54. diff0 = output0.asnumpy() - expect0
  55. error0 = np.ones(shape=expect0.shape) * 1.0e-5
  56. assert np.all(diff0 < error0)
  57. assert output0.shape == expect0.shape
  58. output1 = zeros_like(x1)
  59. expect1 = np.zeros_like(x1_np)
  60. diff1 = output1.asnumpy() - expect1
  61. error1 = np.ones(shape=expect1.shape) * 1.0e-5
  62. assert np.all(diff1 < error1)
  63. assert output1.shape == expect1.shape
  64. class ZerosLikeDynamicNet(nn.Cell):
  65. def __init__(self):
  66. super(ZerosLikeDynamicNet, self).__init__()
  67. self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape()
  68. self.zeros_like = P.ZerosLike()
  69. def construct(self, x):
  70. converted_to_dynamic = self.gpu_convert_to_dynamic_shape(x)
  71. return self.zeros_like(converted_to_dynamic)
  72. def zeros_like_dynamic(x):
  73. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  74. net = ZerosLikeDynamicNet()
  75. return net(x)
  76. @pytest.mark.level0
  77. @pytest.mark.platform_x86_gpu_training
  78. @pytest.mark.env_onecard
  79. def test_zeros_like_dynamic_bool():
  80. x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.bool))
  81. output = zeros_like_dynamic(x)
  82. expected = np.zeros([3, 4, 1, 2, 5])
  83. np.testing.assert_array_equal(output.asnumpy(), expected)
  84. @pytest.mark.level0
  85. @pytest.mark.platform_x86_gpu_training
  86. @pytest.mark.env_onecard
  87. def test_zeros_like_dynamic_int8():
  88. x = Tensor(np.arange(24).reshape(1, 4, 1, 6).astype(np.int8))
  89. output = zeros_like_dynamic(x)
  90. expected = np.zeros([1, 4, 1, 6])
  91. np.testing.assert_array_equal(output.asnumpy(), expected)
  92. @pytest.mark.level0
  93. @pytest.mark.platform_x86_gpu_training
  94. @pytest.mark.env_onecard
  95. def test_zeros_like_dynamic_uint8():
  96. x = Tensor(np.arange(30).reshape(3, 2, 5).astype(np.uint8))
  97. output = zeros_like_dynamic(x)
  98. expected = np.zeros([3, 2, 5])
  99. np.testing.assert_array_equal(output.asnumpy(), expected)
  100. @pytest.mark.level0
  101. @pytest.mark.platform_x86_gpu_training
  102. @pytest.mark.env_onecard
  103. def test_zeros_like_dynamic_int32():
  104. x = Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(np.int32))
  105. output = zeros_like_dynamic(x)
  106. expected = np.zeros([2, 2, 2, 2])
  107. np.testing.assert_array_equal(output.asnumpy(), expected)
  108. @pytest.mark.level0
  109. @pytest.mark.platform_x86_gpu_training
  110. @pytest.mark.env_onecard
  111. def test_zeros_like_dynamic_float16():
  112. x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.float16))
  113. output = zeros_like_dynamic(x)
  114. expected = np.zeros([3, 4, 1, 2, 5])
  115. np.testing.assert_array_almost_equal(output.asnumpy(), expected)
  116. @pytest.mark.level0
  117. @pytest.mark.platform_x86_gpu_training
  118. @pytest.mark.env_onecard
  119. def test_zeros_like_dynamic_float32():
  120. x = Tensor(np.arange(63).reshape(3, 7, 3).astype(np.float32))
  121. output = zeros_like_dynamic(x)
  122. expected = np.zeros([3, 7, 3])
  123. np.testing.assert_array_almost_equal(output.asnumpy(), expected)
  124. @pytest.mark.level0
  125. @pytest.mark.platform_x86_gpu_training
  126. @pytest.mark.env_onecard
  127. def test_zeros_like_dynamic_float64():
  128. x = Tensor(np.arange(2).reshape(2, 1, 1).astype(np.float64))
  129. output = zeros_like_dynamic(x)
  130. expected = np.zeros([2, 1, 1])
  131. np.testing.assert_array_almost_equal(output.asnumpy(), expected)
  132. @pytest.mark.level0
  133. @pytest.mark.platform_x86_gpu_training
  134. @pytest.mark.env_onecard
  135. def test_zeros_like_dynamic_multiple_inputs():
  136. net = ZerosLikeDynamicNet()
  137. x = Tensor(np.arange(4).reshape(4).astype(np.float32))
  138. output = net(x)
  139. expected = np.zeros([4])
  140. np.testing.assert_array_almost_equal(output.asnumpy(), expected)
  141. x = Tensor(np.arange(8).reshape(2, 1, 2, 2).astype(np.uint8))
  142. output = net(x)
  143. expected = np.zeros([2, 1, 2, 2])
  144. np.testing.assert_array_equal(output.asnumpy(), expected)
  145. x = Tensor(np.arange(1).reshape(1).astype(np.float16))
  146. output = net(x)
  147. expected = np.zeros([1])
  148. np.testing.assert_array_almost_equal(output.asnumpy(), expected)