|
- # Copyright 2019-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import ms_function
- from mindspore.ops import operations as P
-
- context.set_context(device_target='GPU')
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.add = P.AddN()
-
- @ms_function
- def construct(self, x, y, z):
- return self.add((x, y, z))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_net():
- x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
- y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
- z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
- add = Net()
- output = add(Tensor(x), Tensor(y), Tensor(z))
- expect_result = [[[[0., 3., 6., 9.],
- [12., 15., 18., 21.],
- [24., 27., 30., 33.]],
- [[36., 39., 42., 45.],
- [48., 51., 54., 57.],
- [60., 63., 66., 69.]],
- [[72., 75., 78., 81.],
- [84., 87., 90., 93.],
- [96., 99., 102., 105.]]]]
-
- assert (output.asnumpy() == expect_result).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_net_float64():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
- y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
- z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
- add = Net()
- output = add(Tensor(x), Tensor(y), Tensor(z))
- expect_result = np.array([[[[0., 3., 6., 9.],
- [12., 15., 18., 21.],
- [24., 27., 30., 33.]],
- [[36., 39., 42., 45.],
- [48., 51., 54., 57.],
- [60., 63., 66., 69.]],
- [[72., 75., 78., 81.],
- [84., 87., 90., 93.],
- [96., 99., 102., 105.]]]]).astype(np.float64)
- assert (output.asnumpy() == expect_result).all()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
- y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
- z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
- add = Net()
- output = add(Tensor(x), Tensor(y), Tensor(z))
- expect_result = np.array([[[[0., 3., 6., 9.],
- [12., 15., 18., 21.],
- [24., 27., 30., 33.]],
- [[36., 39., 42., 45.],
- [48., 51., 54., 57.],
- [60., 63., 66., 69.]],
- [[72., 75., 78., 81.],
- [84., 87., 90., 93.],
- [96., 99., 102., 105.]]]]).astype(np.float64)
- assert (output.asnumpy() == expect_result).all()
|