You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_addn_op.py 3.9 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. # Copyright 2019-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.common.api import ms_function
  21. from mindspore.ops import operations as P
  22. context.set_context(device_target='GPU')
  23. class Net(nn.Cell):
  24. def __init__(self):
  25. super(Net, self).__init__()
  26. self.add = P.AddN()
  27. @ms_function
  28. def construct(self, x, y, z):
  29. return self.add((x, y, z))
  30. @pytest.mark.level0
  31. @pytest.mark.platform_x86_gpu_training
  32. @pytest.mark.env_onecard
  33. def test_net():
  34. x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
  35. y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
  36. z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
  37. add = Net()
  38. output = add(Tensor(x), Tensor(y), Tensor(z))
  39. expect_result = [[[[0., 3., 6., 9.],
  40. [12., 15., 18., 21.],
  41. [24., 27., 30., 33.]],
  42. [[36., 39., 42., 45.],
  43. [48., 51., 54., 57.],
  44. [60., 63., 66., 69.]],
  45. [[72., 75., 78., 81.],
  46. [84., 87., 90., 93.],
  47. [96., 99., 102., 105.]]]]
  48. assert (output.asnumpy() == expect_result).all()
  49. @pytest.mark.level0
  50. @pytest.mark.platform_x86_gpu_training
  51. @pytest.mark.env_onecard
  52. def test_net_float64():
  53. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  54. x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
  55. y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
  56. z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
  57. add = Net()
  58. output = add(Tensor(x), Tensor(y), Tensor(z))
  59. expect_result = np.array([[[[0., 3., 6., 9.],
  60. [12., 15., 18., 21.],
  61. [24., 27., 30., 33.]],
  62. [[36., 39., 42., 45.],
  63. [48., 51., 54., 57.],
  64. [60., 63., 66., 69.]],
  65. [[72., 75., 78., 81.],
  66. [84., 87., 90., 93.],
  67. [96., 99., 102., 105.]]]]).astype(np.float64)
  68. assert (output.asnumpy() == expect_result).all()
  69. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  70. x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
  71. y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
  72. z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
  73. add = Net()
  74. output = add(Tensor(x), Tensor(y), Tensor(z))
  75. expect_result = np.array([[[[0., 3., 6., 9.],
  76. [12., 15., 18., 21.],
  77. [24., 27., 30., 33.]],
  78. [[36., 39., 42., 45.],
  79. [48., 51., 54., 57.],
  80. [60., 63., 66., 69.]],
  81. [[72., 75., 78., 81.],
  82. [84., 87., 90., 93.],
  83. [96., 99., 102., 105.]]]]).astype(np.float64)
  84. assert (output.asnumpy() == expect_result).all()