|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Training process"""
-
- import os
-
- from mindspore import nn
- from mindspore import context
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train import Model
- from mindspore.nn.metrics import Accuracy
-
- from src.moxing_adapter import moxing_wrapper
- from src.config import config
- from src.dataset import create_lenet_dataset
- from src.foo import LeNet5
-
-
- @moxing_wrapper()
- def train_lenet5():
- """
- Train lenet5
- """
- config.ckpt_path = config.output_path
- context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
- ds_train = create_lenet_dataset(os.path.join(config.data_path, "train"), config.batch_size, num_parallel_workers=1)
- if ds_train.get_dataset_size() == 0:
- raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
-
- network = LeNet5(config.num_classes)
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), config.lr, config.momentum)
- time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
- config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
- directory=None if config.ckpt_path == "" else config.ckpt_path,
- config=config_ck)
-
- if config.device_target != "Ascend":
- model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
- else:
- model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}, amp_level="O2")
-
- print("============== Starting Training ==============")
- model.train(config.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
-
-
- if __name__ == '__main__':
- train_lenet5()
|