# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Training process""" import os from mindspore import nn from mindspore import context from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train import Model from mindspore.nn.metrics import Accuracy from src.moxing_adapter import moxing_wrapper from src.config import config from src.dataset import create_lenet_dataset from src.foo import LeNet5 @moxing_wrapper() def train_lenet5(): """ Train lenet5 """ config.ckpt_path = config.output_path context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target) ds_train = create_lenet_dataset(os.path.join(config.data_path, "train"), config.batch_size, num_parallel_workers=1) if ds_train.get_dataset_size() == 0: raise ValueError("Please check dataset size > 0 and batch_size <= dataset size") network = LeNet5(config.num_classes) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_opt = nn.Momentum(network.trainable_params(), config.lr, config.momentum) time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps, keep_checkpoint_max=config.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory=None if config.ckpt_path == "" else config.ckpt_path, config=config_ck) if config.device_target != "Ascend": model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) else: model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}, amp_level="O2") print("============== Starting Training ==============") model.train(config.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()]) if __name__ == '__main__': train_lenet5()