|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train ShuffleNetV1"""
- import os
- import time
- import argparse
- import numpy as np
- from mindspore import context
- from mindspore import Tensor
- from mindspore.common import set_seed
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.train.model import Model, ParallelMode
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.communication.management import init, get_rank, get_group_size
- from mindspore.train.loss_scale_manager import FixedLossScaleManager
- from src.lr_generator import get_lr
- from src.shufflenetv1 import ShuffleNetV1
- from src.config import config
- from src.dataset import create_dataset
- from src.crossentropysmooth import CrossEntropySmooth
-
- set_seed(1)
-
-
- class Monitor(Callback):
- """
- Monitor loss and time.
-
- Args:
- lr_init (numpy array): train lr
-
- Returns:
- None
-
- Examples:
- >>> Monitor(lr_init=Tensor([0.05]*100).asnumpy())
- """
-
- def __init__(self, lr_init=None):
- super(Monitor, self).__init__()
- self.lr_init = lr_init
- self.lr_init_len = len(lr_init)
-
- def epoch_begin(self, run_context):
- self.losses = []
- self.epoch_time = time.time()
-
- def epoch_end(self, run_context):
- cb_params = run_context.original_args()
-
- epoch_mseconds = (time.time() - self.epoch_time) * 1000
- per_step_mseconds = epoch_mseconds / cb_params.batch_num
- print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds, per_step_mseconds,
- np.mean(self.losses)))
-
- def step_begin(self, run_context):
- self.step_time = time.time()
-
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- step_loss = cb_params.net_outputs
-
- if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
- step_loss = step_loss[0]
- if isinstance(step_loss, Tensor):
- step_loss = np.mean(step_loss.asnumpy())
-
- self.losses.append(step_loss)
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='image classification training')
- parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training')
- parser.add_argument('--device_target', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform')
- parser.add_argument('--dataset_path', type=str, default='', help='dataset path')
- parser.add_argument('--device_id', type=int, default=0, help='device id')
- parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
- parser.add_argument('--model_size', type=str, default='2.0x', help='ShuffleNetV1 model size',
- choices=['2.0x', '1.5x', '1.0x', '0.5x'])
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
-
- # init distributed
- if args_opt.is_distributed:
- if os.getenv('DEVICE_ID', "not_set").isdigit():
- context.set_context(device_id=int(os.getenv('DEVICE_ID')))
- init()
- rank = get_rank()
- group_size = get_group_size()
- parallel_mode = ParallelMode.DATA_PARALLEL
- context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=group_size, gradients_mean=True)
- else:
- rank = 0
- group_size = 1
- context.set_context(device_id=args_opt.device_id)
-
- # define network
- net = ShuffleNetV1(model_size=args_opt.model_size)
-
- # define loss
- loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=config.label_smooth_factor,
- num_classes=config.num_classes)
-
- # define dataset
- dataset = create_dataset(args_opt.dataset_path, do_train=True, device_num=group_size, rank=rank)
- batches_per_epoch = dataset.get_dataset_size()
-
- # resume
- if args_opt.resume:
- ckpt = load_checkpoint(args_opt.resume)
- load_param_into_net(net, ckpt)
-
- # get learning rate
- lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs,
- total_epochs=config.epoch_size, steps_per_epoch=batches_per_epoch, lr_decay_mode=config.decay_method)
- lr = Tensor(lr)
- # define optimization
- optimizer = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
- weight_decay=config.weight_decay, loss_scale=config.loss_scale)
-
- # model
- loss_scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
- model = Model(net, loss_fn=loss, optimizer=optimizer, amp_level=config.amp_level,
- loss_scale_manager=loss_scale_manager)
-
- # define callbacks
- cb = [Monitor(lr_init=lr.asnumpy())]
- if config.save_checkpoint:
- save_ckpt_path = config.ckpt_path
- config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * batches_per_epoch,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint("shufflenetv1", directory=save_ckpt_path, config=config_ck)
-
- print("============== Starting Training ==============")
- start_time = time.time()
- # begin train
- if args_opt.is_distributed:
- if rank == 0:
- cb += [ckpt_cb]
- else:
- cb += [ckpt_cb]
- model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
- print("time: ", (time.time() - start_time) * 1000)
- print("============== Train Success ==============")
|