You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train ShuffleNetV1"""
  16. import os
  17. import time
  18. import argparse
  19. import numpy as np
  20. from mindspore import context
  21. from mindspore import Tensor
  22. from mindspore.common import set_seed
  23. from mindspore.nn.optim.momentum import Momentum
  24. from mindspore.train.model import Model, ParallelMode
  25. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
  26. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  27. from mindspore.communication.management import init, get_rank, get_group_size
  28. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  29. from src.lr_generator import get_lr
  30. from src.shufflenetv1 import ShuffleNetV1
  31. from src.config import config
  32. from src.dataset import create_dataset
  33. from src.crossentropysmooth import CrossEntropySmooth
  34. set_seed(1)
  35. class Monitor(Callback):
  36. """
  37. Monitor loss and time.
  38. Args:
  39. lr_init (numpy array): train lr
  40. Returns:
  41. None
  42. Examples:
  43. >>> Monitor(lr_init=Tensor([0.05]*100).asnumpy())
  44. """
  45. def __init__(self, lr_init=None):
  46. super(Monitor, self).__init__()
  47. self.lr_init = lr_init
  48. self.lr_init_len = len(lr_init)
  49. def epoch_begin(self, run_context):
  50. self.losses = []
  51. self.epoch_time = time.time()
  52. def epoch_end(self, run_context):
  53. cb_params = run_context.original_args()
  54. epoch_mseconds = (time.time() - self.epoch_time) * 1000
  55. per_step_mseconds = epoch_mseconds / cb_params.batch_num
  56. print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds, per_step_mseconds,
  57. np.mean(self.losses)))
  58. def step_begin(self, run_context):
  59. self.step_time = time.time()
  60. def step_end(self, run_context):
  61. cb_params = run_context.original_args()
  62. step_loss = cb_params.net_outputs
  63. if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
  64. step_loss = step_loss[0]
  65. if isinstance(step_loss, Tensor):
  66. step_loss = np.mean(step_loss.asnumpy())
  67. self.losses.append(step_loss)
  68. if __name__ == '__main__':
  69. parser = argparse.ArgumentParser(description='image classification training')
  70. parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training')
  71. parser.add_argument('--device_target', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform')
  72. parser.add_argument('--dataset_path', type=str, default='', help='dataset path')
  73. parser.add_argument('--device_id', type=int, default=0, help='device id')
  74. parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
  75. parser.add_argument('--model_size', type=str, default='2.0x', help='ShuffleNetV1 model size',
  76. choices=['2.0x', '1.5x', '1.0x', '0.5x'])
  77. args_opt = parser.parse_args()
  78. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
  79. # init distributed
  80. if args_opt.is_distributed:
  81. if os.getenv('DEVICE_ID', "not_set").isdigit():
  82. context.set_context(device_id=int(os.getenv('DEVICE_ID')))
  83. init()
  84. rank = get_rank()
  85. group_size = get_group_size()
  86. parallel_mode = ParallelMode.DATA_PARALLEL
  87. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=group_size, gradients_mean=True)
  88. else:
  89. rank = 0
  90. group_size = 1
  91. context.set_context(device_id=args_opt.device_id)
  92. # define network
  93. net = ShuffleNetV1(model_size=args_opt.model_size)
  94. # define loss
  95. loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=config.label_smooth_factor,
  96. num_classes=config.num_classes)
  97. # define dataset
  98. dataset = create_dataset(args_opt.dataset_path, do_train=True, device_num=group_size, rank=rank)
  99. batches_per_epoch = dataset.get_dataset_size()
  100. # resume
  101. if args_opt.resume:
  102. ckpt = load_checkpoint(args_opt.resume)
  103. load_param_into_net(net, ckpt)
  104. # get learning rate
  105. lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs,
  106. total_epochs=config.epoch_size, steps_per_epoch=batches_per_epoch, lr_decay_mode=config.decay_method)
  107. lr = Tensor(lr)
  108. # define optimization
  109. optimizer = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
  110. weight_decay=config.weight_decay, loss_scale=config.loss_scale)
  111. # model
  112. loss_scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  113. model = Model(net, loss_fn=loss, optimizer=optimizer, amp_level=config.amp_level,
  114. loss_scale_manager=loss_scale_manager)
  115. # define callbacks
  116. cb = [Monitor(lr_init=lr.asnumpy())]
  117. if config.save_checkpoint:
  118. save_ckpt_path = config.ckpt_path
  119. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * batches_per_epoch,
  120. keep_checkpoint_max=config.keep_checkpoint_max)
  121. ckpt_cb = ModelCheckpoint("shufflenetv1", directory=save_ckpt_path, config=config_ck)
  122. print("============== Starting Training ==============")
  123. start_time = time.time()
  124. # begin train
  125. if args_opt.is_distributed:
  126. if rank == 0:
  127. cb += [ckpt_cb]
  128. else:
  129. cb += [ckpt_cb]
  130. model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
  131. print("time: ", (time.time() - start_time) * 1000)
  132. print("============== Train Success ==============")