|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Data operations, will be used in train.py."""
-
- import mindspore.common.dtype as mstype
- import mindspore.dataset.engine.datasets as de
- import mindspore.dataset.transforms.c_transforms as deC
- from mindspore import log as logger
- from .config import transformer_net_cfg
-
- def create_transformer_dataset(epoch_count=1, rank_size=1, rank_id=0, do_shuffle="true", enable_data_sink="true",
- dataset_path=None):
- """create dataset"""
- repeat_count = epoch_count
- ds = de.MindDataset(dataset_path,
- columns_list=["source_eos_ids", "source_eos_mask",
- "target_sos_ids", "target_sos_mask",
- "target_eos_ids", "target_eos_mask"],
- shuffle=(do_shuffle == "true"), num_shards=rank_size, shard_id=rank_id)
-
- type_cast_op = deC.TypeCast(mstype.int32)
- ds = ds.map(input_columns="source_eos_ids", operations=type_cast_op)
- ds = ds.map(input_columns="source_eos_mask", operations=type_cast_op)
- ds = ds.map(input_columns="target_sos_ids", operations=type_cast_op)
- ds = ds.map(input_columns="target_sos_mask", operations=type_cast_op)
- ds = ds.map(input_columns="target_eos_ids", operations=type_cast_op)
- ds = ds.map(input_columns="target_eos_mask", operations=type_cast_op)
-
- # apply batch operations
- ds = ds.batch(transformer_net_cfg.batch_size, drop_remainder=True)
- ds = ds.repeat(repeat_count)
-
- ds.channel_name = 'transformer'
- logger.info("data size: {}".format(ds.get_dataset_size()))
- logger.info("repeatcount: {}".format(ds.get_repeat_count()))
- return ds, repeat_count
|