# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Data operations, will be used in train.py.""" import mindspore.common.dtype as mstype import mindspore.dataset.engine.datasets as de import mindspore.dataset.transforms.c_transforms as deC from mindspore import log as logger from .config import transformer_net_cfg def create_transformer_dataset(epoch_count=1, rank_size=1, rank_id=0, do_shuffle="true", enable_data_sink="true", dataset_path=None): """create dataset""" repeat_count = epoch_count ds = de.MindDataset(dataset_path, columns_list=["source_eos_ids", "source_eos_mask", "target_sos_ids", "target_sos_mask", "target_eos_ids", "target_eos_mask"], shuffle=(do_shuffle == "true"), num_shards=rank_size, shard_id=rank_id) type_cast_op = deC.TypeCast(mstype.int32) ds = ds.map(input_columns="source_eos_ids", operations=type_cast_op) ds = ds.map(input_columns="source_eos_mask", operations=type_cast_op) ds = ds.map(input_columns="target_sos_ids", operations=type_cast_op) ds = ds.map(input_columns="target_sos_mask", operations=type_cast_op) ds = ds.map(input_columns="target_eos_ids", operations=type_cast_op) ds = ds.map(input_columns="target_eos_mask", operations=type_cast_op) # apply batch operations ds = ds.batch(transformer_net_cfg.batch_size, drop_remainder=True) ds = ds.repeat(repeat_count) ds.channel_name = 'transformer' logger.info("data size: {}".format(ds.get_dataset_size())) logger.info("repeatcount: {}".format(ds.get_repeat_count())) return ds, repeat_count