|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- #################train textcnn example on movie review########################
- python train.py
- """
- import argparse
- import math
-
- import mindspore.nn as nn
- from mindspore.nn.metrics import Accuracy
- from mindspore import context
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from src.config import cfg_mr, cfg_subj, cfg_sst2
- from src.textcnn import TextCNN
- from src.textcnn import SoftmaxCrossEntropyExpand
- from src.dataset import MovieReview, SST2, Subjectivity
-
- parser = argparse.ArgumentParser(description='TextCNN')
- parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
- help='device where the code will be implemented (default: Ascend)')
- parser.add_argument('--device_id', type=int, default=5, help='device id of GPU or Ascend.')
- parser.add_argument('--dataset', type=str, default="MR", choices=['MR', 'SUBJ', 'SST2'])
- args_opt = parser.parse_args()
-
- if __name__ == '__main__':
- rank = 0
- # set context
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
- context.set_context(device_id=args_opt.device_id)
- if args_opt.dataset == 'MR':
- cfg = cfg_mr
- instance = MovieReview(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
- elif args_opt.dataset == 'SUBJ':
- cfg = cfg_subj
- instance = Subjectivity(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
- elif args_opt.dataset == 'SST2':
- cfg = cfg_sst2
- instance = SST2(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
-
- dataset = instance.create_train_dataset(batch_size=cfg.batch_size, epoch_size=cfg.epoch_size)
- batch_num = dataset.get_dataset_size()
-
- base_lr = cfg.base_lr
- learning_rate = []
- warm_up = [base_lr / math.floor(cfg.epoch_size / 5) * (i + 1) for _ in range(batch_num) for i in
- range(math.floor(cfg.epoch_size / 5))]
- shrink = [base_lr / (16 * (i + 1)) for _ in range(batch_num) for i in range(math.floor(cfg.epoch_size * 3 / 5))]
- normal_run = [base_lr for _ in range(batch_num) for i in
- range(cfg.epoch_size - math.floor(cfg.epoch_size / 5) - math.floor(cfg.epoch_size * 2 / 5))]
- learning_rate = learning_rate + warm_up + normal_run + shrink
-
- net = TextCNN(vocab_len=instance.get_dict_len(), word_len=cfg.word_len,
- num_classes=cfg.num_classes, vec_length=cfg.vec_length)
- # Continue training if set pre_trained to be True
- if cfg.pre_trained:
- param_dict = load_checkpoint(cfg.checkpoint_path)
- load_param_into_net(net, param_dict)
-
- opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate=learning_rate, weight_decay=cfg.weight_decay)
- loss = SoftmaxCrossEntropyExpand(sparse=True)
-
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()})
-
- config_ck = CheckpointConfig(save_checkpoint_steps=int(cfg.epoch_size*batch_num/2),
- keep_checkpoint_max=cfg.keep_checkpoint_max)
- time_cb = TimeMonitor(data_size=batch_num)
- ckpt_save_dir = "./ckpt_" + str(rank) + "/"
- ckpoint_cb = ModelCheckpoint(prefix="train_textcnn", directory=ckpt_save_dir, config=config_ck)
- loss_cb = LossMonitor()
- model.train(cfg.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb])
- print("train success")
|