# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ #################train textcnn example on movie review######################## python train.py """ import argparse import math import mindspore.nn as nn from mindspore.nn.metrics import Accuracy from mindspore import context from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.config import cfg_mr, cfg_subj, cfg_sst2 from src.textcnn import TextCNN from src.textcnn import SoftmaxCrossEntropyExpand from src.dataset import MovieReview, SST2, Subjectivity parser = argparse.ArgumentParser(description='TextCNN') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--device_id', type=int, default=5, help='device id of GPU or Ascend.') parser.add_argument('--dataset', type=str, default="MR", choices=['MR', 'SUBJ', 'SST2']) args_opt = parser.parse_args() if __name__ == '__main__': rank = 0 # set context context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(device_id=args_opt.device_id) if args_opt.dataset == 'MR': cfg = cfg_mr instance = MovieReview(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9) elif args_opt.dataset == 'SUBJ': cfg = cfg_subj instance = Subjectivity(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9) elif args_opt.dataset == 'SST2': cfg = cfg_sst2 instance = SST2(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9) dataset = instance.create_train_dataset(batch_size=cfg.batch_size, epoch_size=cfg.epoch_size) batch_num = dataset.get_dataset_size() base_lr = cfg.base_lr learning_rate = [] warm_up = [base_lr / math.floor(cfg.epoch_size / 5) * (i + 1) for _ in range(batch_num) for i in range(math.floor(cfg.epoch_size / 5))] shrink = [base_lr / (16 * (i + 1)) for _ in range(batch_num) for i in range(math.floor(cfg.epoch_size * 3 / 5))] normal_run = [base_lr for _ in range(batch_num) for i in range(cfg.epoch_size - math.floor(cfg.epoch_size / 5) - math.floor(cfg.epoch_size * 2 / 5))] learning_rate = learning_rate + warm_up + normal_run + shrink net = TextCNN(vocab_len=instance.get_dict_len(), word_len=cfg.word_len, num_classes=cfg.num_classes, vec_length=cfg.vec_length) # Continue training if set pre_trained to be True if cfg.pre_trained: param_dict = load_checkpoint(cfg.checkpoint_path) load_param_into_net(net, param_dict) opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate=learning_rate, weight_decay=cfg.weight_decay) loss = SoftmaxCrossEntropyExpand(sparse=True) model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()}) config_ck = CheckpointConfig(save_checkpoint_steps=int(cfg.epoch_size*batch_num/2), keep_checkpoint_max=cfg.keep_checkpoint_max) time_cb = TimeMonitor(data_size=batch_num) ckpt_save_dir = "./ckpt_" + str(rank) + "/" ckpoint_cb = ModelCheckpoint(prefix="train_textcnn", directory=ckpt_save_dir, config=config_ck) loss_cb = LossMonitor() model.train(cfg.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb]) print("train success")