|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train Xception."""
- import os
- import argparse
-
- from mindspore import context
- from mindspore import Tensor
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.train.model import Model, ParallelMode
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.communication.management import init, get_rank, get_group_size
- from mindspore.train.loss_scale_manager import FixedLossScaleManager
- from mindspore.common import dtype as mstype
- from mindspore.common import set_seed
-
- from src.lr_generator import get_lr
- from src.Xception import xception
- from src.config import config_gpu, config_ascend
- from src.dataset import create_dataset
- from src.loss import CrossEntropySmooth
-
- set_seed(1)
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='image classification training')
- parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training')
- parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
- help='run platform, (Default: Ascend)')
- parser.add_argument('--dataset_path', type=str, default=None, help='dataset path')
- parser.add_argument("--is_fp32", action='store_true', default=False, help='fp32 training, add --is_fp32')
- parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
-
- args_opt = parser.parse_args()
- if args_opt.device_target == "Ascend":
- config = config_ascend
- elif args_opt.device_target == "GPU":
- config = config_gpu
- else:
- raise ValueError("Unsupported device_target.")
-
- # init distributed
- if args_opt.is_distributed:
- if os.getenv('DEVICE_ID', "not_set").isdigit():
- context.set_context(device_id=int(os.getenv('DEVICE_ID')))
- init()
- rank = get_rank()
- group_size = get_group_size()
- parallel_mode = ParallelMode.DATA_PARALLEL
- context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=group_size, gradients_mean=True)
- else:
- rank = 0
- group_size = 1
- context.set_context(device_id=0)
- # if os.getenv('DEVICE_ID', "not_set").isdigit():
- # context.set_context(device_id=int(os.getenv('DEVICE_ID')))
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
- # define network
- net = xception(class_num=config.class_num)
- if args_opt.device_target == "Ascend":
- net.to_float(mstype.float16)
-
- # define loss
- if not config.use_label_smooth:
- config.label_smooth_factor = 0.0
- loss = CrossEntropySmooth(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
-
- # define dataset
- dataset = create_dataset(args_opt.dataset_path, do_train=True, batch_size=config.batch_size,
- device_num=group_size, rank=rank)
- step_size = dataset.get_dataset_size()
-
- # resume
- if args_opt.resume:
- ckpt = load_checkpoint(args_opt.resume)
- load_param_into_net(net, ckpt)
-
- # get learning rate
- loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
- lr = Tensor(get_lr(lr_init=config.lr_init,
- lr_end=config.lr_end,
- lr_max=config.lr_max,
- warmup_epochs=config.warmup_epochs,
- total_epochs=config.epoch_size,
- steps_per_epoch=step_size,
- lr_decay_mode=config.lr_decay_mode,
- global_step=config.finish_epoch * step_size))
-
- # define optimization and model
- if args_opt.device_target == "Ascend":
- opt = Momentum(net.trainable_params(), lr, config.momentum, config.weight_decay, config.loss_scale)
- model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
- amp_level='O3', keep_batchnorm_fp32=True)
- elif args_opt.device_target == "GPU":
- if args_opt.is_fp32:
- opt = Momentum(net.trainable_params(), lr, config.momentum, config.weight_decay)
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
- else:
- opt = Momentum(net.trainable_params(), lr, config.momentum, config.weight_decay, config.loss_scale)
- model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
- amp_level='O2', keep_batchnorm_fp32=True)
-
- # define callbacks
- cb = [TimeMonitor(), LossMonitor()]
- if config.save_checkpoint:
- if args_opt.device_target == "Ascend":
- save_ckpt_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/')
- elif args_opt.device_target == "GPU":
- if args_opt.is_fp32:
- save_ckpt_path = os.path.join(config.save_checkpoint_path, 'fp32/' + 'model_' + str(rank))
- else:
- save_ckpt_path = os.path.join(config.save_checkpoint_path, 'fp16/' + 'model_' + str(rank))
- config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(f"Xception-rank{rank}", directory=save_ckpt_path, config=config_ck)
-
- # begin train
- print("begin train")
- if args_opt.is_distributed:
- if rank == 0:
- cb += [ckpt_cb]
- model.train(config.epoch_size - config.finish_epoch, dataset, callbacks=cb, dataset_sink_mode=True)
- else:
- cb += [ckpt_cb]
- model.train(config.epoch_size - config.finish_epoch, dataset, callbacks=cb, dataset_sink_mode=True)
- print("train success")
|