You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.6 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train Xception."""
  16. import os
  17. import argparse
  18. from mindspore import context
  19. from mindspore import Tensor
  20. from mindspore.nn.optim.momentum import Momentum
  21. from mindspore.train.model import Model, ParallelMode
  22. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor
  23. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  24. from mindspore.communication.management import init, get_rank, get_group_size
  25. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  26. from mindspore.common import dtype as mstype
  27. from mindspore.common import set_seed
  28. from src.lr_generator import get_lr
  29. from src.Xception import xception
  30. from src.config import config_gpu, config_ascend
  31. from src.dataset import create_dataset
  32. from src.loss import CrossEntropySmooth
  33. set_seed(1)
  34. if __name__ == '__main__':
  35. parser = argparse.ArgumentParser(description='image classification training')
  36. parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training')
  37. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  38. help='run platform, (Default: Ascend)')
  39. parser.add_argument('--dataset_path', type=str, default=None, help='dataset path')
  40. parser.add_argument("--is_fp32", action='store_true', default=False, help='fp32 training, add --is_fp32')
  41. parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
  42. args_opt = parser.parse_args()
  43. if args_opt.device_target == "Ascend":
  44. config = config_ascend
  45. elif args_opt.device_target == "GPU":
  46. config = config_gpu
  47. else:
  48. raise ValueError("Unsupported device_target.")
  49. # init distributed
  50. if args_opt.is_distributed:
  51. if os.getenv('DEVICE_ID', "not_set").isdigit():
  52. context.set_context(device_id=int(os.getenv('DEVICE_ID')))
  53. init()
  54. rank = get_rank()
  55. group_size = get_group_size()
  56. parallel_mode = ParallelMode.DATA_PARALLEL
  57. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=group_size, gradients_mean=True)
  58. else:
  59. rank = 0
  60. group_size = 1
  61. context.set_context(device_id=0)
  62. # if os.getenv('DEVICE_ID', "not_set").isdigit():
  63. # context.set_context(device_id=int(os.getenv('DEVICE_ID')))
  64. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
  65. # define network
  66. net = xception(class_num=config.class_num)
  67. if args_opt.device_target == "Ascend":
  68. net.to_float(mstype.float16)
  69. # define loss
  70. if not config.use_label_smooth:
  71. config.label_smooth_factor = 0.0
  72. loss = CrossEntropySmooth(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  73. # define dataset
  74. dataset = create_dataset(args_opt.dataset_path, do_train=True, batch_size=config.batch_size,
  75. device_num=group_size, rank=rank)
  76. step_size = dataset.get_dataset_size()
  77. # resume
  78. if args_opt.resume:
  79. ckpt = load_checkpoint(args_opt.resume)
  80. load_param_into_net(net, ckpt)
  81. # get learning rate
  82. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  83. lr = Tensor(get_lr(lr_init=config.lr_init,
  84. lr_end=config.lr_end,
  85. lr_max=config.lr_max,
  86. warmup_epochs=config.warmup_epochs,
  87. total_epochs=config.epoch_size,
  88. steps_per_epoch=step_size,
  89. lr_decay_mode=config.lr_decay_mode,
  90. global_step=config.finish_epoch * step_size))
  91. # define optimization and model
  92. if args_opt.device_target == "Ascend":
  93. opt = Momentum(net.trainable_params(), lr, config.momentum, config.weight_decay, config.loss_scale)
  94. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  95. amp_level='O3', keep_batchnorm_fp32=True)
  96. elif args_opt.device_target == "GPU":
  97. if args_opt.is_fp32:
  98. opt = Momentum(net.trainable_params(), lr, config.momentum, config.weight_decay)
  99. model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
  100. else:
  101. opt = Momentum(net.trainable_params(), lr, config.momentum, config.weight_decay, config.loss_scale)
  102. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  103. amp_level='O2', keep_batchnorm_fp32=True)
  104. # define callbacks
  105. cb = [TimeMonitor(), LossMonitor()]
  106. if config.save_checkpoint:
  107. if args_opt.device_target == "Ascend":
  108. save_ckpt_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/')
  109. elif args_opt.device_target == "GPU":
  110. if args_opt.is_fp32:
  111. save_ckpt_path = os.path.join(config.save_checkpoint_path, 'fp32/' + 'model_' + str(rank))
  112. else:
  113. save_ckpt_path = os.path.join(config.save_checkpoint_path, 'fp16/' + 'model_' + str(rank))
  114. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  115. keep_checkpoint_max=config.keep_checkpoint_max)
  116. ckpt_cb = ModelCheckpoint(f"Xception-rank{rank}", directory=save_ckpt_path, config=config_ck)
  117. # begin train
  118. print("begin train")
  119. if args_opt.is_distributed:
  120. if rank == 0:
  121. cb += [ckpt_cb]
  122. model.train(config.epoch_size - config.finish_epoch, dataset, callbacks=cb, dataset_sink_mode=True)
  123. else:
  124. cb += [ckpt_cb]
  125. model.train(config.epoch_size - config.finish_epoch, dataset, callbacks=cb, dataset_sink_mode=True)
  126. print("train success")