You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_conv_grad.py 2.2 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore.context as context
  17. import mindspore.nn as nn
  18. from mindspore import Tensor
  19. from mindspore.common.api import ms_function
  20. from mindspore.common.initializer import initializer
  21. from mindspore.common.parameter import Parameter
  22. from mindspore.ops import operations as P
  23. from mindspore.ops.composite import GradOperation
  24. context.set_context(device_target="Ascend")
  25. class Grad(nn.Cell):
  26. def __init__(self, network):
  27. super(Grad, self).__init__()
  28. self.grad = GradOperation(get_all=True, sens_param=True)
  29. self.network = network
  30. @ms_function
  31. def construct(self, input_, output_grad):
  32. return self.grad(self.network)(input_, output_grad)
  33. class Net(nn.Cell):
  34. def __init__(self):
  35. super(Net, self).__init__()
  36. out_channel = 512
  37. kernel_size = 2048
  38. self.conv = P.Conv2D(out_channel,
  39. (kernel_size, kernel_size),
  40. mode=1,
  41. pad_mode="same",
  42. pad=3,
  43. stride=2,
  44. dilation=1,
  45. group=1)
  46. self.w = Parameter(initializer(
  47. 'normal', [512, 2048, 1, 1]), name='w')
  48. @ms_function
  49. def construct(self, x):
  50. return self.conv(x, self.w)
  51. def test_net():
  52. x = np.ones([32, 2048, 7, 7]).astype(np.float32)
  53. sens = np.ones([32, 512, 7, 7]).astype(np.float32)
  54. net = Grad(Net())
  55. output = net(Tensor(x), Tensor(sens))
  56. print(output.asnumpy())