You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_addn.py 1.8 kB

5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore.context as context
  17. import mindspore.nn as nn
  18. import mindspore.ops.composite as C
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  22. class Net(nn.Cell):
  23. def __init__(self):
  24. super(Net, self).__init__()
  25. self.add = P.AddN()
  26. def construct(self, x, y):
  27. return self.add((x, y))
  28. def test_net():
  29. x = np.random.randn(1, 3, 3, 4).astype(np.float32)
  30. y = np.random.randn(1, 3, 3, 4).astype(np.float32)
  31. add = Net()
  32. output = add(Tensor(x), Tensor(y))
  33. print(x)
  34. print(y)
  35. print(output.asnumpy())
  36. x = 1.0
  37. y = 2.0
  38. expect = 3.0
  39. add = Net()
  40. output = add(x, y)
  41. assert output == expect
  42. def test_grad_addn_with_list():
  43. grad_op = C.GradOperation(get_all=True)
  44. class AddN(nn.Cell):
  45. def __init__(self):
  46. super().__init__()
  47. self.add_n = P.AddN()
  48. def construct(self, a, b):
  49. return self.add_n([a, b])
  50. inp = Tensor(np.ones([128, 96]).astype(np.float32))
  51. grad_op(AddN())(inp, inp)