|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- class Net(nn.Cell):
- def __init__(self, axis=-1):
- super(Net, self).__init__()
- self.Softmax = P.Softmax(axis)
-
- def construct(self, x):
- return self.Softmax(x)
-
- def get_output(x, enable_graph_kernel=False):
- context.set_context(enable_graph_kernel=enable_graph_kernel)
- opt = Net()
- output = opt(Tensor(x))
- return output
-
- def test_softmax(shape, dtype):
- np.random.seed(0)
- x = np.random.normal(0, 1, shape).astype(dtype)
-
- expect = get_output(x, False)
- output = get_output(x, True)
-
- rtol = 1.e-4
- atol = 1.e-4
- if dtype == "float16":
- rtol = 1.e-3
- atol = 1.e-3
-
- assert np.allclose(expect.asnumpy(), output.asnumpy(), rtol, atol, equal_nan=True)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_softmax_gpu():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- test_softmax([4, 32, 48], np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_softmax_ascend():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- test_softmax([2, 32, 48, 64], np.float32)
|