You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_softmax.py 2.1 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class Net(nn.Cell):
  22. def __init__(self, axis=-1):
  23. super(Net, self).__init__()
  24. self.Softmax = P.Softmax(axis)
  25. def construct(self, x):
  26. return self.Softmax(x)
  27. def get_output(x, enable_graph_kernel=False):
  28. context.set_context(enable_graph_kernel=enable_graph_kernel)
  29. opt = Net()
  30. output = opt(Tensor(x))
  31. return output
  32. def test_softmax(shape, dtype):
  33. np.random.seed(0)
  34. x = np.random.normal(0, 1, shape).astype(dtype)
  35. expect = get_output(x, False)
  36. output = get_output(x, True)
  37. rtol = 1.e-4
  38. atol = 1.e-4
  39. if dtype == "float16":
  40. rtol = 1.e-3
  41. atol = 1.e-3
  42. assert np.allclose(expect.asnumpy(), output.asnumpy(), rtol, atol, equal_nan=True)
  43. @pytest.mark.level0
  44. @pytest.mark.platform_x86_gpu_training
  45. @pytest.mark.env_onecard
  46. def test_softmax_gpu():
  47. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  48. test_softmax([4, 32, 48], np.float32)
  49. @pytest.mark.level0
  50. @pytest.mark.platform_arm_ascend_training
  51. @pytest.mark.platform_x86_ascend_training
  52. @pytest.mark.env_onecard
  53. def test_softmax_ascend():
  54. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  55. test_softmax([2, 32, 48, 64], np.float32)