|
- /**
- * Copyright 2020-2021 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #include <memory>
- #include <list>
-
- #include "common/common.h"
- #include "minddata/dataset/callback/ds_callback.h"
- #include "minddata/dataset/core/client.h"
- #include "minddata/dataset/engine/datasetops/epoch_ctrl_op.h"
- #include "minddata/dataset/engine/datasetops/source/random_data_op.h"
- #include "minddata/dataset/engine/tree_adapter.h"
- #include "minddata/dataset/include/datasets.h"
- #include "minddata/dataset/include/transforms.h"
- #include "minddata/dataset/kernels/data/no_op.h"
- #include "utils/log_adapter.h"
-
- using namespace mindspore::dataset;
- using mindspore::LogStream;
- using mindspore::MsLogLevel::INFO;
-
- namespace mindspore {
- namespace dataset {
- namespace test {
-
- std::shared_ptr<ExecutionTree> BuildTree(std::vector<std::shared_ptr<DatasetOp>> ops) {
- std::shared_ptr<ExecutionTree> tree = std::make_shared<ExecutionTree>();
- Status rc;
- for (int i = 0; i < ops.size(); i++) {
- rc = tree->AssociateNode(ops[i]);
- EXPECT_TRUE(rc.IsOk());
- if (i > 0) {
- rc = ops[i]->AddChild(ops[i - 1]);
- EXPECT_TRUE(rc.IsOk());
- }
- if (i == ops.size() - 1) {
- rc = tree->AssignRoot(ops[i]);
- EXPECT_TRUE(rc.IsOk());
- }
- }
- return tree;
- }
-
- class TestCallback : public DSCallback {
- public:
- TestCallback(int32_t step_size)
- : DSCallback(step_size),
- begin_(true),
- epoch_begin_(true),
- step_begin_(true),
- end_(false),
- epoch_end_(true),
- step_end_(true) {
- all_names_.reserve(32);
- all_step_nums_.reserve(32);
- all_ep_nums_.reserve(32);
- }
-
- Status DSBegin(const CallbackParam &cb_param) override {
- all_names_.push_back("BGN");
- all_step_nums_.push_back(cb_param.cur_step_num_);
- all_ep_nums_.push_back(cb_param.cur_epoch_num_);
- return Status::OK();
- }
- Status DSEpochBegin(const CallbackParam &cb_param) override {
- all_names_.push_back("EPBGN");
- all_step_nums_.push_back(cb_param.cur_step_num_);
- all_ep_nums_.push_back(cb_param.cur_epoch_num_);
- return Status::OK();
- }
- Status DSNStepBegin(const CallbackParam &cb_param) override {
- all_names_.push_back("SPBGN");
- all_step_nums_.push_back(cb_param.cur_step_num_);
- all_ep_nums_.push_back(cb_param.cur_epoch_num_);
- return Status::OK();
- }
- Status DSEnd(const CallbackParam &cb_param) override {
- all_names_.push_back("END");
- all_step_nums_.push_back(cb_param.cur_step_num_);
- all_ep_nums_.push_back(cb_param.cur_epoch_num_);
- return Status::OK();
- }
- Status DSEpochEnd(const CallbackParam &cb_param) override {
- all_names_.push_back("EPEND");
- all_step_nums_.push_back(cb_param.cur_step_num_);
- all_ep_nums_.push_back(cb_param.cur_epoch_num_);
- return Status::OK();
- }
- Status DSNStepEnd(const CallbackParam &cb_param) override {
- all_names_.push_back("SPEND");
- all_step_nums_.push_back(cb_param.cur_step_num_);
- all_ep_nums_.push_back(cb_param.cur_epoch_num_);
- return Status::OK();
- }
-
- bool IsBeginNeeded() override { return begin_; }
- bool IsEpochBeginNeeded() override { return epoch_begin_; }
- bool IsNStepBeginNeeded() override { return step_begin_; }
- bool IsEndNeeded() override { return end_; }
- bool IsEpochEndNeeded() override { return epoch_end_; }
- bool IsNStepEndNeeded() override { return step_end_; }
-
- std::vector<std::string> all_names(size_t len) {
- return std::vector<std::string>(all_names_.begin(), all_names_.begin() + len);
- }
-
- std::vector<int64_t> all_step_nums(size_t len) {
- return std::vector<int64_t>(all_step_nums_.begin(), all_step_nums_.begin() + len);
- }
-
- std::vector<int64_t> all_ep_nums(size_t len) {
- return std::vector<int64_t>(all_ep_nums_.begin(), all_ep_nums_.begin() + len);
- }
-
- // flag for turning callback on and off
- bool begin_, epoch_begin_, step_begin_, end_, epoch_end_, step_end_;
- // name of the callback function in sequence, BGN, EPBGN, SPB, END, EPEND, SPEND
- std::vector<std::string> all_names_;
- std::vector<int64_t> all_step_nums_, all_ep_nums_;
- };
-
- } // namespace test
- } // namespace dataset
- } // namespace mindspore
-
- class MindDataTestCallback : public UT::DatasetOpTesting {
- public:
- void SetUp() override {
- DatasetOpTesting::SetUp();
- GlobalInit();
- }
- };
-
- TEST_F(MindDataTestCallback, TestBasicCallback) {
- MS_LOG(INFO) << "Doing: MindDataTestCallback-TestBasicCallback";
- // config callback
- Status rc;
- std::shared_ptr<test::TestCallback> tst_cb = std::make_shared<test::TestCallback>(64);
- std::shared_ptr<DSCallback> cb1 = tst_cb;
- // config leaf_op, use random_data to avoid I/O
- std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
- TensorShape shape({}); // empty shape is a 1-value scalar Tensor
- ColDescriptor col("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &shape);
- ASSERT_OK(schema->AddColumn(col));
- std::shared_ptr<RandomDataOp> leaf;
- rc = RandomDataOp::Builder().SetDataSchema(std::move(schema)).SetTotalRows(44).Build(&leaf);
- EXPECT_TRUE(rc.IsOk());
- // config mapOp
- std::shared_ptr<MapOp> map_op;
- auto map_b = MapOp::Builder();
- rc = map_b.SetInColNames({"label"}).SetTensorFuncs({std::make_shared<NoOp>()}).AddCallbacks({cb1}).Build(&map_op);
- EXPECT_TRUE(rc.IsOk());
- // config RepeatOp
- std::shared_ptr<RepeatOp> repeat_op;
- rc = RepeatOp::Builder(2).Build(&repeat_op);
- // start build then launch tree
- leaf->set_total_repeats(2);
- leaf->set_num_repeats_per_epoch(2);
- map_op->set_total_repeats(2);
- map_op->set_num_repeats_per_epoch(2);
- std::shared_ptr<ExecutionTree> tree = test::BuildTree({leaf, map_op, repeat_op});
- rc = tree->Prepare();
- EXPECT_TRUE(rc.IsOk());
- rc = tree->Launch();
- EXPECT_TRUE(rc.IsOk());
- // Start the loop of reading tensors from our pipeline
- DatasetIterator di(tree);
- TensorMap tensor_map;
- rc = di.GetNextAsMap(&tensor_map);
- EXPECT_TRUE(rc.IsOk());
- while (!tensor_map.empty()) {
- rc = di.GetNextAsMap(&tensor_map);
- EXPECT_TRUE(rc.IsOk());
- }
-
- std::vector<std::string> callback_names = {"BGN", "EPBGN", "SPBGN", "SPEND", "SPBGN", "SPEND", "EPEND"};
- std::vector<int64_t> all_steps = {0, 0, 1, 1, 65, 65, 88};
- std::vector<int64_t> all_epochs = {0, 1, 1, 1, 1, 1, 1};
- // doing resize to make sure no unexpected epoch_end or extra epoch_begin is called
- size_t len = 7;
- EXPECT_EQ(tst_cb->all_names(len), callback_names);
- EXPECT_EQ(tst_cb->all_step_nums(len), all_steps);
- EXPECT_EQ(tst_cb->all_ep_nums(len), all_epochs);
- }
-
- TEST_F(MindDataTestCallback, TestMultiEpochCallback) {
- MS_LOG(INFO) << "Doing: MindDataTestCallback-TestMultiEpochCallback";
- // config callback
- Status rc;
- std::shared_ptr<test::TestCallback> tst_cb = std::make_shared<test::TestCallback>(4);
- std::shared_ptr<DSCallback> cb1 = tst_cb;
- // config leaf_op, use random_data to avoid I/O
- std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
- TensorShape shape({}); // empty shape is a 1-value scalar Tensor
- ColDescriptor col("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &shape);
- ASSERT_OK(schema->AddColumn(col));
- std::shared_ptr<RandomDataOp> leaf;
- rc = RandomDataOp::Builder().SetDataSchema(std::move(schema)).SetTotalRows(4).SetNumWorkers(4).Build(&leaf);
- EXPECT_TRUE(rc.IsOk());
- // config mapOp
- std::shared_ptr<MapOp> map_op;
- auto map_b = MapOp::Builder();
- rc = map_b.SetInColNames({"label"}).SetTensorFuncs({std::make_shared<NoOp>()}).AddCallbacks({cb1}).Build(&map_op);
- EXPECT_TRUE(rc.IsOk());
- // config RepeatOp
- std::shared_ptr<RepeatOp> repeat_op;
- rc = RepeatOp::Builder(2).Build(&repeat_op);
- // config EpochCtrlOp
- std::shared_ptr<EpochCtrlOp> epoch_ctrl_op;
- rc = EpochCtrlOp::Builder(-1).Build(&epoch_ctrl_op);
- // start build then launch tree
- leaf->set_total_repeats(-2);
- leaf->set_num_repeats_per_epoch(2);
- map_op->set_total_repeats(-2);
- map_op->set_num_repeats_per_epoch(2);
- std::shared_ptr<ExecutionTree> tree = test::BuildTree({leaf, map_op, repeat_op, epoch_ctrl_op});
- rc = tree->Prepare();
- EXPECT_TRUE(rc.IsOk());
- rc = tree->Launch();
- EXPECT_TRUE(rc.IsOk());
- // Start the loop of reading tensors from our pipeline
- DatasetIterator di(tree);
- TensorMap tensor_map;
- size_t num_epochs = 2;
- for (int ep_num = 0; ep_num < num_epochs; ++ep_num) {
- ASSERT_OK(di.GetNextAsMap(&tensor_map));
- EXPECT_TRUE(rc.IsOk());
-
- while (tensor_map.size() != 0) {
- rc = di.GetNextAsMap(&tensor_map);
- EXPECT_TRUE(rc.IsOk());
- }
- }
-
- std::vector<std::string> callback_names = {"BGN", "EPBGN", "SPBGN", "SPEND", "SPBGN", "SPEND", "EPEND",
- "EPBGN", "SPBGN", "SPEND", "SPBGN", "SPEND", "EPEND"};
-
- std::vector<int64_t> all_steps = {0, 0, 1, 1, 5, 5, 8, 8, 9, 9, 13, 13, 16};
- std::vector<int64_t> all_epochs = {0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2};
-
- size_t len = 13;
- EXPECT_EQ(tst_cb->all_names(len), callback_names);
- EXPECT_EQ(tst_cb->all_ep_nums(len), all_epochs);
- EXPECT_EQ(tst_cb->all_step_nums(len), all_steps);
- }
-
- TEST_F(MindDataTestCallback, TestSelectedCallback) {
- MS_LOG(INFO) << "Doing: MindDataTestCallback-TestSelectedCallback";
- // config callback
- Status rc;
- std::shared_ptr<test::TestCallback> tst_cb = std::make_shared<test::TestCallback>(4);
- std::shared_ptr<DSCallback> cb1 = tst_cb;
- // turn off the epochs
- tst_cb->epoch_begin_ = false;
- tst_cb->epoch_end_ = false;
-
- // config leaf_op, use random_data to avoid I/O
- std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
- TensorShape shape({}); // empty shape is a 1-value scalar Tensor
- ColDescriptor col("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &shape);
- ASSERT_OK(schema->AddColumn(col));
- std::shared_ptr<RandomDataOp> leaf;
- rc = RandomDataOp::Builder().SetDataSchema(std::move(schema)).SetTotalRows(4).SetNumWorkers(4).Build(&leaf);
- EXPECT_TRUE(rc.IsOk());
- // config mapOp
- std::shared_ptr<MapOp> map_op;
- auto map_b = MapOp::Builder();
- rc = map_b.SetInColNames({"label"}).SetTensorFuncs({std::make_shared<NoOp>()}).AddCallbacks({cb1}).Build(&map_op);
- EXPECT_TRUE(rc.IsOk());
- // config RepeatOp
- std::shared_ptr<RepeatOp> repeat_op;
- rc = RepeatOp::Builder(2).Build(&repeat_op);
- // config EpochCtrlOp
- std::shared_ptr<EpochCtrlOp> epoch_ctrl_op;
- rc = EpochCtrlOp::Builder(-1).Build(&epoch_ctrl_op);
- // start build then launch tree
- leaf->set_total_repeats(-2);
- leaf->set_num_repeats_per_epoch(2);
- map_op->set_total_repeats(-2);
- map_op->set_num_repeats_per_epoch(2);
- std::shared_ptr<ExecutionTree> tree = test::BuildTree({leaf, map_op, repeat_op, epoch_ctrl_op});
- rc = tree->Prepare();
- EXPECT_TRUE(rc.IsOk());
- rc = tree->Launch();
- EXPECT_TRUE(rc.IsOk());
- // Start the loop of reading tensors from our pipeline
- DatasetIterator di(tree);
- TensorMap tensor_map;
- size_t num_epochs = 2;
- for (int ep_num = 0; ep_num < num_epochs; ++ep_num) {
- ASSERT_OK(di.GetNextAsMap(&tensor_map));
- EXPECT_TRUE(rc.IsOk());
-
- while (tensor_map.size() != 0) {
- rc = di.GetNextAsMap(&tensor_map);
- EXPECT_TRUE(rc.IsOk());
- }
- }
-
- std::vector<std::string> callback_names = {"BGN", "SPBGN", "SPEND", "SPBGN", "SPEND",
- "SPBGN", "SPEND", "SPBGN", "SPEND"};
-
- std::vector<int64_t> all_steps = {0, 1, 1, 5, 5, 9, 9, 13, 13};
- std::vector<int64_t> all_epochs = {0, 1, 1, 1, 1, 2, 2, 2, 2};
-
- size_t len = 9;
- EXPECT_EQ(tst_cb->all_names(len), callback_names);
- EXPECT_EQ(tst_cb->all_ep_nums(len), all_epochs);
- EXPECT_EQ(tst_cb->all_step_nums(len), all_steps);
- }
-
- TEST_F(MindDataTestCallback, TestCAPICallback) {
- MS_LOG(INFO) << "Doing: MindDataTestCallback-TestCAPICallback";
- // config callback
- std::shared_ptr<test::TestCallback> tst_cb = std::make_shared<test::TestCallback>(64);
- std::shared_ptr<DSCallback> cb1 = tst_cb;
- // Create a RandomDataset. Use random_data to avoid I/O
- std::shared_ptr<SchemaObj> schema = Schema();
- ASSERT_OK(schema->add_column("label", mindspore::DataType::kNumberTypeUInt32, {}));
- std::shared_ptr<Dataset> ds = RandomData(44, schema);
- ASSERT_NE(ds, nullptr);
- ds = ds->Map({std::make_shared<transforms::TypeCast>(mindspore::DataType::kNumberTypeUInt64)}, {"label"}, {}, {}, nullptr, {cb1});
- ASSERT_NE(ds, nullptr);
- ds = ds->Repeat(2);
- ASSERT_NE(ds, nullptr);
-
- TreeAdapter tree_adapter;
- // using tree_adapter to set num_epoch = 1
- ASSERT_OK(tree_adapter.Compile(ds->IRNode(), 1));
-
- TensorRow row;
- ASSERT_OK(tree_adapter.GetNext(&row));
- while (!row.empty()) {
- ASSERT_OK(tree_adapter.GetNext(&row));
- }
- std::vector<std::string> callback_names = {"BGN", "EPBGN", "SPBGN", "SPEND", "SPBGN", "SPEND", "EPEND"};
- std::vector<int64_t> all_steps = {0, 0, 1, 1, 65, 65, 88};
- std::vector<int64_t> all_epochs = {0, 1, 1, 1, 1, 1, 1};
- // doing resize to make sure no unexpected epoch_end or extra epoch_begin is called
- size_t len = 7;
- EXPECT_EQ(tst_cb->all_names(len), callback_names);
- EXPECT_EQ(tst_cb->all_step_nums(len), all_steps);
- EXPECT_EQ(tst_cb->all_ep_nums(len), all_epochs);
- }
|