You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ir_callback_test.cc 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. /**
  2. * Copyright 2020-2021 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <memory>
  17. #include <list>
  18. #include "common/common.h"
  19. #include "minddata/dataset/callback/ds_callback.h"
  20. #include "minddata/dataset/core/client.h"
  21. #include "minddata/dataset/engine/datasetops/epoch_ctrl_op.h"
  22. #include "minddata/dataset/engine/datasetops/source/random_data_op.h"
  23. #include "minddata/dataset/engine/tree_adapter.h"
  24. #include "minddata/dataset/include/datasets.h"
  25. #include "minddata/dataset/include/transforms.h"
  26. #include "minddata/dataset/kernels/data/no_op.h"
  27. #include "utils/log_adapter.h"
  28. using namespace mindspore::dataset;
  29. using mindspore::LogStream;
  30. using mindspore::MsLogLevel::INFO;
  31. namespace mindspore {
  32. namespace dataset {
  33. namespace test {
  34. std::shared_ptr<ExecutionTree> BuildTree(std::vector<std::shared_ptr<DatasetOp>> ops) {
  35. std::shared_ptr<ExecutionTree> tree = std::make_shared<ExecutionTree>();
  36. Status rc;
  37. for (int i = 0; i < ops.size(); i++) {
  38. rc = tree->AssociateNode(ops[i]);
  39. EXPECT_TRUE(rc.IsOk());
  40. if (i > 0) {
  41. rc = ops[i]->AddChild(ops[i - 1]);
  42. EXPECT_TRUE(rc.IsOk());
  43. }
  44. if (i == ops.size() - 1) {
  45. rc = tree->AssignRoot(ops[i]);
  46. EXPECT_TRUE(rc.IsOk());
  47. }
  48. }
  49. return tree;
  50. }
  51. class TestCallback : public DSCallback {
  52. public:
  53. TestCallback(int32_t step_size)
  54. : DSCallback(step_size),
  55. begin_(true),
  56. epoch_begin_(true),
  57. step_begin_(true),
  58. end_(false),
  59. epoch_end_(true),
  60. step_end_(true) {
  61. all_names_.reserve(32);
  62. all_step_nums_.reserve(32);
  63. all_ep_nums_.reserve(32);
  64. }
  65. Status DSBegin(const CallbackParam &cb_param) override {
  66. all_names_.push_back("BGN");
  67. all_step_nums_.push_back(cb_param.cur_step_num_);
  68. all_ep_nums_.push_back(cb_param.cur_epoch_num_);
  69. return Status::OK();
  70. }
  71. Status DSEpochBegin(const CallbackParam &cb_param) override {
  72. all_names_.push_back("EPBGN");
  73. all_step_nums_.push_back(cb_param.cur_step_num_);
  74. all_ep_nums_.push_back(cb_param.cur_epoch_num_);
  75. return Status::OK();
  76. }
  77. Status DSNStepBegin(const CallbackParam &cb_param) override {
  78. all_names_.push_back("SPBGN");
  79. all_step_nums_.push_back(cb_param.cur_step_num_);
  80. all_ep_nums_.push_back(cb_param.cur_epoch_num_);
  81. return Status::OK();
  82. }
  83. Status DSEnd(const CallbackParam &cb_param) override {
  84. all_names_.push_back("END");
  85. all_step_nums_.push_back(cb_param.cur_step_num_);
  86. all_ep_nums_.push_back(cb_param.cur_epoch_num_);
  87. return Status::OK();
  88. }
  89. Status DSEpochEnd(const CallbackParam &cb_param) override {
  90. all_names_.push_back("EPEND");
  91. all_step_nums_.push_back(cb_param.cur_step_num_);
  92. all_ep_nums_.push_back(cb_param.cur_epoch_num_);
  93. return Status::OK();
  94. }
  95. Status DSNStepEnd(const CallbackParam &cb_param) override {
  96. all_names_.push_back("SPEND");
  97. all_step_nums_.push_back(cb_param.cur_step_num_);
  98. all_ep_nums_.push_back(cb_param.cur_epoch_num_);
  99. return Status::OK();
  100. }
  101. bool IsBeginNeeded() override { return begin_; }
  102. bool IsEpochBeginNeeded() override { return epoch_begin_; }
  103. bool IsNStepBeginNeeded() override { return step_begin_; }
  104. bool IsEndNeeded() override { return end_; }
  105. bool IsEpochEndNeeded() override { return epoch_end_; }
  106. bool IsNStepEndNeeded() override { return step_end_; }
  107. std::vector<std::string> all_names(size_t len) {
  108. return std::vector<std::string>(all_names_.begin(), all_names_.begin() + len);
  109. }
  110. std::vector<int64_t> all_step_nums(size_t len) {
  111. return std::vector<int64_t>(all_step_nums_.begin(), all_step_nums_.begin() + len);
  112. }
  113. std::vector<int64_t> all_ep_nums(size_t len) {
  114. return std::vector<int64_t>(all_ep_nums_.begin(), all_ep_nums_.begin() + len);
  115. }
  116. // flag for turning callback on and off
  117. bool begin_, epoch_begin_, step_begin_, end_, epoch_end_, step_end_;
  118. // name of the callback function in sequence, BGN, EPBGN, SPB, END, EPEND, SPEND
  119. std::vector<std::string> all_names_;
  120. std::vector<int64_t> all_step_nums_, all_ep_nums_;
  121. };
  122. } // namespace test
  123. } // namespace dataset
  124. } // namespace mindspore
  125. class MindDataTestCallback : public UT::DatasetOpTesting {
  126. public:
  127. void SetUp() override {
  128. DatasetOpTesting::SetUp();
  129. GlobalInit();
  130. }
  131. };
  132. TEST_F(MindDataTestCallback, TestBasicCallback) {
  133. MS_LOG(INFO) << "Doing: MindDataTestCallback-TestBasicCallback";
  134. // config callback
  135. Status rc;
  136. std::shared_ptr<test::TestCallback> tst_cb = std::make_shared<test::TestCallback>(64);
  137. std::shared_ptr<DSCallback> cb1 = tst_cb;
  138. // config leaf_op, use random_data to avoid I/O
  139. std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
  140. TensorShape shape({}); // empty shape is a 1-value scalar Tensor
  141. ColDescriptor col("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &shape);
  142. ASSERT_OK(schema->AddColumn(col));
  143. std::shared_ptr<RandomDataOp> leaf;
  144. rc = RandomDataOp::Builder().SetDataSchema(std::move(schema)).SetTotalRows(44).Build(&leaf);
  145. EXPECT_TRUE(rc.IsOk());
  146. // config mapOp
  147. std::shared_ptr<MapOp> map_op;
  148. auto map_b = MapOp::Builder();
  149. rc = map_b.SetInColNames({"label"}).SetTensorFuncs({std::make_shared<NoOp>()}).AddCallbacks({cb1}).Build(&map_op);
  150. EXPECT_TRUE(rc.IsOk());
  151. // config RepeatOp
  152. std::shared_ptr<RepeatOp> repeat_op;
  153. rc = RepeatOp::Builder(2).Build(&repeat_op);
  154. // start build then launch tree
  155. leaf->set_total_repeats(2);
  156. leaf->set_num_repeats_per_epoch(2);
  157. map_op->set_total_repeats(2);
  158. map_op->set_num_repeats_per_epoch(2);
  159. std::shared_ptr<ExecutionTree> tree = test::BuildTree({leaf, map_op, repeat_op});
  160. rc = tree->Prepare();
  161. EXPECT_TRUE(rc.IsOk());
  162. rc = tree->Launch();
  163. EXPECT_TRUE(rc.IsOk());
  164. // Start the loop of reading tensors from our pipeline
  165. DatasetIterator di(tree);
  166. TensorMap tensor_map;
  167. rc = di.GetNextAsMap(&tensor_map);
  168. EXPECT_TRUE(rc.IsOk());
  169. while (!tensor_map.empty()) {
  170. rc = di.GetNextAsMap(&tensor_map);
  171. EXPECT_TRUE(rc.IsOk());
  172. }
  173. std::vector<std::string> callback_names = {"BGN", "EPBGN", "SPBGN", "SPEND", "SPBGN", "SPEND", "EPEND"};
  174. std::vector<int64_t> all_steps = {0, 0, 1, 1, 65, 65, 88};
  175. std::vector<int64_t> all_epochs = {0, 1, 1, 1, 1, 1, 1};
  176. // doing resize to make sure no unexpected epoch_end or extra epoch_begin is called
  177. size_t len = 7;
  178. EXPECT_EQ(tst_cb->all_names(len), callback_names);
  179. EXPECT_EQ(tst_cb->all_step_nums(len), all_steps);
  180. EXPECT_EQ(tst_cb->all_ep_nums(len), all_epochs);
  181. }
  182. TEST_F(MindDataTestCallback, TestMultiEpochCallback) {
  183. MS_LOG(INFO) << "Doing: MindDataTestCallback-TestMultiEpochCallback";
  184. // config callback
  185. Status rc;
  186. std::shared_ptr<test::TestCallback> tst_cb = std::make_shared<test::TestCallback>(4);
  187. std::shared_ptr<DSCallback> cb1 = tst_cb;
  188. // config leaf_op, use random_data to avoid I/O
  189. std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
  190. TensorShape shape({}); // empty shape is a 1-value scalar Tensor
  191. ColDescriptor col("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &shape);
  192. ASSERT_OK(schema->AddColumn(col));
  193. std::shared_ptr<RandomDataOp> leaf;
  194. rc = RandomDataOp::Builder().SetDataSchema(std::move(schema)).SetTotalRows(4).SetNumWorkers(4).Build(&leaf);
  195. EXPECT_TRUE(rc.IsOk());
  196. // config mapOp
  197. std::shared_ptr<MapOp> map_op;
  198. auto map_b = MapOp::Builder();
  199. rc = map_b.SetInColNames({"label"}).SetTensorFuncs({std::make_shared<NoOp>()}).AddCallbacks({cb1}).Build(&map_op);
  200. EXPECT_TRUE(rc.IsOk());
  201. // config RepeatOp
  202. std::shared_ptr<RepeatOp> repeat_op;
  203. rc = RepeatOp::Builder(2).Build(&repeat_op);
  204. // config EpochCtrlOp
  205. std::shared_ptr<EpochCtrlOp> epoch_ctrl_op;
  206. rc = EpochCtrlOp::Builder(-1).Build(&epoch_ctrl_op);
  207. // start build then launch tree
  208. leaf->set_total_repeats(-2);
  209. leaf->set_num_repeats_per_epoch(2);
  210. map_op->set_total_repeats(-2);
  211. map_op->set_num_repeats_per_epoch(2);
  212. std::shared_ptr<ExecutionTree> tree = test::BuildTree({leaf, map_op, repeat_op, epoch_ctrl_op});
  213. rc = tree->Prepare();
  214. EXPECT_TRUE(rc.IsOk());
  215. rc = tree->Launch();
  216. EXPECT_TRUE(rc.IsOk());
  217. // Start the loop of reading tensors from our pipeline
  218. DatasetIterator di(tree);
  219. TensorMap tensor_map;
  220. size_t num_epochs = 2;
  221. for (int ep_num = 0; ep_num < num_epochs; ++ep_num) {
  222. ASSERT_OK(di.GetNextAsMap(&tensor_map));
  223. EXPECT_TRUE(rc.IsOk());
  224. while (tensor_map.size() != 0) {
  225. rc = di.GetNextAsMap(&tensor_map);
  226. EXPECT_TRUE(rc.IsOk());
  227. }
  228. }
  229. std::vector<std::string> callback_names = {"BGN", "EPBGN", "SPBGN", "SPEND", "SPBGN", "SPEND", "EPEND",
  230. "EPBGN", "SPBGN", "SPEND", "SPBGN", "SPEND", "EPEND"};
  231. std::vector<int64_t> all_steps = {0, 0, 1, 1, 5, 5, 8, 8, 9, 9, 13, 13, 16};
  232. std::vector<int64_t> all_epochs = {0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2};
  233. size_t len = 13;
  234. EXPECT_EQ(tst_cb->all_names(len), callback_names);
  235. EXPECT_EQ(tst_cb->all_ep_nums(len), all_epochs);
  236. EXPECT_EQ(tst_cb->all_step_nums(len), all_steps);
  237. }
  238. TEST_F(MindDataTestCallback, TestSelectedCallback) {
  239. MS_LOG(INFO) << "Doing: MindDataTestCallback-TestSelectedCallback";
  240. // config callback
  241. Status rc;
  242. std::shared_ptr<test::TestCallback> tst_cb = std::make_shared<test::TestCallback>(4);
  243. std::shared_ptr<DSCallback> cb1 = tst_cb;
  244. // turn off the epochs
  245. tst_cb->epoch_begin_ = false;
  246. tst_cb->epoch_end_ = false;
  247. // config leaf_op, use random_data to avoid I/O
  248. std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
  249. TensorShape shape({}); // empty shape is a 1-value scalar Tensor
  250. ColDescriptor col("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &shape);
  251. ASSERT_OK(schema->AddColumn(col));
  252. std::shared_ptr<RandomDataOp> leaf;
  253. rc = RandomDataOp::Builder().SetDataSchema(std::move(schema)).SetTotalRows(4).SetNumWorkers(4).Build(&leaf);
  254. EXPECT_TRUE(rc.IsOk());
  255. // config mapOp
  256. std::shared_ptr<MapOp> map_op;
  257. auto map_b = MapOp::Builder();
  258. rc = map_b.SetInColNames({"label"}).SetTensorFuncs({std::make_shared<NoOp>()}).AddCallbacks({cb1}).Build(&map_op);
  259. EXPECT_TRUE(rc.IsOk());
  260. // config RepeatOp
  261. std::shared_ptr<RepeatOp> repeat_op;
  262. rc = RepeatOp::Builder(2).Build(&repeat_op);
  263. // config EpochCtrlOp
  264. std::shared_ptr<EpochCtrlOp> epoch_ctrl_op;
  265. rc = EpochCtrlOp::Builder(-1).Build(&epoch_ctrl_op);
  266. // start build then launch tree
  267. leaf->set_total_repeats(-2);
  268. leaf->set_num_repeats_per_epoch(2);
  269. map_op->set_total_repeats(-2);
  270. map_op->set_num_repeats_per_epoch(2);
  271. std::shared_ptr<ExecutionTree> tree = test::BuildTree({leaf, map_op, repeat_op, epoch_ctrl_op});
  272. rc = tree->Prepare();
  273. EXPECT_TRUE(rc.IsOk());
  274. rc = tree->Launch();
  275. EXPECT_TRUE(rc.IsOk());
  276. // Start the loop of reading tensors from our pipeline
  277. DatasetIterator di(tree);
  278. TensorMap tensor_map;
  279. size_t num_epochs = 2;
  280. for (int ep_num = 0; ep_num < num_epochs; ++ep_num) {
  281. ASSERT_OK(di.GetNextAsMap(&tensor_map));
  282. EXPECT_TRUE(rc.IsOk());
  283. while (tensor_map.size() != 0) {
  284. rc = di.GetNextAsMap(&tensor_map);
  285. EXPECT_TRUE(rc.IsOk());
  286. }
  287. }
  288. std::vector<std::string> callback_names = {"BGN", "SPBGN", "SPEND", "SPBGN", "SPEND",
  289. "SPBGN", "SPEND", "SPBGN", "SPEND"};
  290. std::vector<int64_t> all_steps = {0, 1, 1, 5, 5, 9, 9, 13, 13};
  291. std::vector<int64_t> all_epochs = {0, 1, 1, 1, 1, 2, 2, 2, 2};
  292. size_t len = 9;
  293. EXPECT_EQ(tst_cb->all_names(len), callback_names);
  294. EXPECT_EQ(tst_cb->all_ep_nums(len), all_epochs);
  295. EXPECT_EQ(tst_cb->all_step_nums(len), all_steps);
  296. }
  297. TEST_F(MindDataTestCallback, TestCAPICallback) {
  298. MS_LOG(INFO) << "Doing: MindDataTestCallback-TestCAPICallback";
  299. // config callback
  300. std::shared_ptr<test::TestCallback> tst_cb = std::make_shared<test::TestCallback>(64);
  301. std::shared_ptr<DSCallback> cb1 = tst_cb;
  302. // Create a RandomDataset. Use random_data to avoid I/O
  303. std::shared_ptr<SchemaObj> schema = Schema();
  304. ASSERT_OK(schema->add_column("label", mindspore::DataType::kNumberTypeUInt32, {}));
  305. std::shared_ptr<Dataset> ds = RandomData(44, schema);
  306. ASSERT_NE(ds, nullptr);
  307. ds = ds->Map({std::make_shared<transforms::TypeCast>(mindspore::DataType::kNumberTypeUInt64)}, {"label"}, {}, {}, nullptr, {cb1});
  308. ASSERT_NE(ds, nullptr);
  309. ds = ds->Repeat(2);
  310. ASSERT_NE(ds, nullptr);
  311. TreeAdapter tree_adapter;
  312. // using tree_adapter to set num_epoch = 1
  313. ASSERT_OK(tree_adapter.Compile(ds->IRNode(), 1));
  314. TensorRow row;
  315. ASSERT_OK(tree_adapter.GetNext(&row));
  316. while (!row.empty()) {
  317. ASSERT_OK(tree_adapter.GetNext(&row));
  318. }
  319. std::vector<std::string> callback_names = {"BGN", "EPBGN", "SPBGN", "SPEND", "SPBGN", "SPEND", "EPEND"};
  320. std::vector<int64_t> all_steps = {0, 0, 1, 1, 65, 65, 88};
  321. std::vector<int64_t> all_epochs = {0, 1, 1, 1, 1, 1, 1};
  322. // doing resize to make sure no unexpected epoch_end or extra epoch_begin is called
  323. size_t len = 7;
  324. EXPECT_EQ(tst_cb->all_names(len), callback_names);
  325. EXPECT_EQ(tst_cb->all_step_nums(len), all_steps);
  326. EXPECT_EQ(tst_cb->all_ep_nums(len), all_epochs);
  327. }