|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Aggregator."""
- import mindspore.nn as nn
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore._extends import cell_attr_register
- from mindspore import Tensor, Parameter
- from mindspore.common.initializer import initializer
- from mindspore._checkparam import check_int_positive, check_bool
- from mindspore.nn.layer.activation import get_activation
-
-
- class GNNFeatureTransform(nn.Cell):
- r"""
- The GNN featuren transform layer for input.
-
- Applies linear transformation for the input feature. This layer implements the operation as:
-
- .. math::
- \text{outputs} = \text{inputs} * \text{kernel} + \text{bias},
-
- where :math:`\text{activation}` is the activation function passed as the activation
- argument (if passed in),:math:`\text{activation}` is a weight matrix with the same
- data type as the inputs created by the layer, and :math:`\text{bias}` is a bias vector
- with the same data type as the inputs created by the layer (only if has_bias is True).
-
- Args:
- in_channels (int): The number of channels in the input space.
- out_channels (int): The number of channels in the output space.
- weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
- is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
- bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
- same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
- has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
-
- Raises:
- ValueError: If weight_init or bias_init shape is incorrect.
-
- Inputs:
- - **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(*B, N, C)`,
- where :math:`*B` represents the batch size which can be multidimensional, :math:`N` and :math:`C` are the
- size of the last two dimensions. If `transpose_a` is True, its shape should be :math:`(*B, C, N)`.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(*B, N, M)`.
-
- Examples:
- >>> net = nn.Dense(3, 4)
- >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
- >>> net(input)
- [[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
- [ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
- """
- @cell_attr_register(attrs=['has_bias', 'activation'])
- def __init__(self,
- in_channels,
- out_channels,
- weight_init='normal',
- bias_init='zeros',
- has_bias=True):
- super(GNNFeatureTransform, self).__init__()
- self.in_channels = check_int_positive(in_channels)
- self.out_channels = check_int_positive(out_channels)
- self.has_bias = check_bool(has_bias)
-
- if isinstance(weight_init, Tensor):
- if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
- weight_init.shape()[1] != in_channels:
- raise ValueError("weight_init shape error")
-
- self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
-
- if self.has_bias:
- if isinstance(bias_init, Tensor):
- if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
- raise ValueError("bias_init shape error")
-
- self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
-
- self.matmul = P.MatMul(transpose_b=True)
- self.bias_add = P.BiasAdd()
-
- def construct(self, x):
- tensor_shape = F.shape(x)
- input_feature = F.reshape(x, (tensor_shape[0] * tensor_shape[1], tensor_shape[2]))
- output = self.matmul(input_feature, self.weight)
- if self.has_bias:
- output = self.bias_add(output, self.bias)
- output = F.reshape(output, (tensor_shape[0], tensor_shape[1], self.out_channels))
- return output
-
- def extend_repr(self):
- str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}' \
- .format(self.in_channels, self.out_channels, self.weight, self.has_bias)
- if self.has_bias:
- str_info = str_info + ', bias={}'.format(self.bias)
-
- return str_info
-
-
- class _BaseAggregator(nn.Cell):
- """
- Base Aggregator of GNN
-
- Args:
- feature_in_dim (int): Node or edge input feature dim.
- feature_out_dim (int): Node or edge outpout feature dim.
- use_fc (bool): Specifies whether a linear transformation before message is aggregated. Default: True
- weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
- is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
- bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
- same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
- has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
- dropout_ratio (float): The keep rate of dropout layer, greater than 0 and less equal than 1. Default: None.
- activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
-
- Examples:
- >>> class MyAggregator(_BaseAggregator):
- >>> def __init__(self):
- >>> super(MyAggregator, self).__init__(self, feature_in_dim, feature_out_dim)
- >>> self.reduce_mean = P.ReduceSum()
- >>>
- >>> def construct(self, x):
- >>> return self.reduce_mean(x, 1)
- """
- def __init__(self,
- feature_in_dim,
- feature_out_dim,
- use_fc=True,
- weight_init="normal",
- bias_init="zeros",
- has_bias=True,
- dropout_ratio=None,
- activation=None):
- super(_BaseAggregator, self).__init__()
- self.in_dim = feature_in_dim
- self.out_dim = feature_out_dim
- self.use_fc = use_fc
- if self.use_fc:
- self.weight_init = weight_init
- self.bias_init = bias_init
- self.has_bias = has_bias
- self.fc = GNNFeatureTransform(self.in_dim,
- self.out_dim,
- weight_init=self.weight_init,
- bias_init=self.bias_init,
- has_bias=self.has_bias)
- self.dropout_ratio = dropout_ratio
- if self.dropout_ratio is not None:
- self.dropout = nn.Dropout(keep_prob=self.dropout_ratio)
- self.dropout_flag = self.dropout_ratio is not None
- self.activation = get_activation(activation)
- self.activation_flag = self.activation is not None
-
- def construct(self, **kward):
- """Must be overridden by all subclasses."""
- raise NotImplementedError
-
-
- class MeanAggregator(_BaseAggregator):
- """
- Mean Aggregator of GNN
-
- Args:
- feature_in_dim (int): Node or edge input feature dim.
- feature_out_dim (int): Node or edge outpout feature dim.
- use_fc (bool): Specifies whether a linear transformation before message is aggregated. Default: True
- weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
- is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
- bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
- same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
- has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
- dropout_ratio (float): The keep rate of dropout layer, greater than 0 and less equal than 1. Default: None.
- activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
-
- Examples:
- >>> net = MeanAggregator(32, 64, activation="relu", dropout=0.5)
- >>> input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtypy=np.float32))
- >>> output = net(input_data)
- """
- def __init__(self,
- feature_in_dim,
- feature_out_dim,
- use_fc=True,
- weight_init="normal",
- bias_init="zeros",
- has_bias=True,
- dropout_ratio=None,
- activation=None):
- super(MeanAggregator, self).__init__(
- feature_in_dim,
- feature_out_dim,
- use_fc=True,
- weight_init="normal",
- bias_init="zeros",
- has_bias=True,
- dropout_ratio=None,
- activation=None)
- self.reduce_mean = P.ReduceMean(keep_dims=False)
-
- def construct(self, input_feature):
- if self.use_fc:
- input_feature = self.fc(input_feature)
- if self.dropout_flag:
- input_feature = self.dropout(input_feature)
- if self.activation_flag:
- input_feature = self.activation(input_feature)
- output_feature = self.reduce_mean(input_feature, 1)
- return output_feature
|