# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Aggregator.""" import mindspore.nn as nn from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore._extends import cell_attr_register from mindspore import Tensor, Parameter from mindspore.common.initializer import initializer from mindspore._checkparam import check_int_positive, check_bool from mindspore.nn.layer.activation import get_activation class GNNFeatureTransform(nn.Cell): r""" The GNN featuren transform layer for input. Applies linear transformation for the input feature. This layer implements the operation as: .. math:: \text{outputs} = \text{inputs} * \text{kernel} + \text{bias}, where :math:`\text{activation}` is the activation function passed as the activation argument (if passed in),:math:`\text{activation}` is a weight matrix with the same data type as the inputs created by the layer, and :math:`\text{bias}` is a bias vector with the same data type as the inputs created by the layer (only if has_bias is True). Args: in_channels (int): The number of channels in the input space. out_channels (int): The number of channels in the output space. weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'zeros'. has_bias (bool): Specifies whether the layer uses a bias vector. Default: True. Raises: ValueError: If weight_init or bias_init shape is incorrect. Inputs: - **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(*B, N, C)`, where :math:`*B` represents the batch size which can be multidimensional, :math:`N` and :math:`C` are the size of the last two dimensions. If `transpose_a` is True, its shape should be :math:`(*B, C, N)`. Outputs: Tensor, the shape of the output tensor is :math:`(*B, N, M)`. Examples: >>> net = nn.Dense(3, 4) >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32) >>> net(input) [[ 2.5246444 2.2738023 0.5711005 -3.9399147 ] [ 1.0739875 4.0155234 0.94188046 -5.459526 ]] """ @cell_attr_register(attrs=['has_bias', 'activation']) def __init__(self, in_channels, out_channels, weight_init='normal', bias_init='zeros', has_bias=True): super(GNNFeatureTransform, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) self.has_bias = check_bool(has_bias) if isinstance(weight_init, Tensor): if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \ weight_init.shape()[1] != in_channels: raise ValueError("weight_init shape error") self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight") if self.has_bias: if isinstance(bias_init, Tensor): if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels: raise ValueError("bias_init shape error") self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias") self.matmul = P.MatMul(transpose_b=True) self.bias_add = P.BiasAdd() def construct(self, x): tensor_shape = F.shape(x) input_feature = F.reshape(x, (tensor_shape[0] * tensor_shape[1], tensor_shape[2])) output = self.matmul(input_feature, self.weight) if self.has_bias: output = self.bias_add(output, self.bias) output = F.reshape(output, (tensor_shape[0], tensor_shape[1], self.out_channels)) return output def extend_repr(self): str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}' \ .format(self.in_channels, self.out_channels, self.weight, self.has_bias) if self.has_bias: str_info = str_info + ', bias={}'.format(self.bias) return str_info class _BaseAggregator(nn.Cell): """ Base Aggregator of GNN Args: feature_in_dim (int): Node or edge input feature dim. feature_out_dim (int): Node or edge outpout feature dim. use_fc (bool): Specifies whether a linear transformation before message is aggregated. Default: True weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'zeros'. has_bias (bool): Specifies whether the layer uses a bias vector. Default: True. dropout_ratio (float): The keep rate of dropout layer, greater than 0 and less equal than 1. Default: None. activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None. Examples: >>> class MyAggregator(_BaseAggregator): >>> def __init__(self): >>> super(MyAggregator, self).__init__(self, feature_in_dim, feature_out_dim) >>> self.reduce_mean = P.ReduceSum() >>> >>> def construct(self, x): >>> return self.reduce_mean(x, 1) """ def __init__(self, feature_in_dim, feature_out_dim, use_fc=True, weight_init="normal", bias_init="zeros", has_bias=True, dropout_ratio=None, activation=None): super(_BaseAggregator, self).__init__() self.in_dim = feature_in_dim self.out_dim = feature_out_dim self.use_fc = use_fc if self.use_fc: self.weight_init = weight_init self.bias_init = bias_init self.has_bias = has_bias self.fc = GNNFeatureTransform(self.in_dim, self.out_dim, weight_init=self.weight_init, bias_init=self.bias_init, has_bias=self.has_bias) self.dropout_ratio = dropout_ratio if self.dropout_ratio is not None: self.dropout = nn.Dropout(keep_prob=self.dropout_ratio) self.dropout_flag = self.dropout_ratio is not None self.activation = get_activation(activation) self.activation_flag = self.activation is not None def construct(self, **kward): """Must be overridden by all subclasses.""" raise NotImplementedError class MeanAggregator(_BaseAggregator): """ Mean Aggregator of GNN Args: feature_in_dim (int): Node or edge input feature dim. feature_out_dim (int): Node or edge outpout feature dim. use_fc (bool): Specifies whether a linear transformation before message is aggregated. Default: True weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'normal'. bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is same as input x. The values of str refer to the function `initializer`. Default: 'zeros'. has_bias (bool): Specifies whether the layer uses a bias vector. Default: True. dropout_ratio (float): The keep rate of dropout layer, greater than 0 and less equal than 1. Default: None. activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None. Examples: >>> net = MeanAggregator(32, 64, activation="relu", dropout=0.5) >>> input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtypy=np.float32)) >>> output = net(input_data) """ def __init__(self, feature_in_dim, feature_out_dim, use_fc=True, weight_init="normal", bias_init="zeros", has_bias=True, dropout_ratio=None, activation=None): super(MeanAggregator, self).__init__( feature_in_dim, feature_out_dim, use_fc=True, weight_init="normal", bias_init="zeros", has_bias=True, dropout_ratio=None, activation=None) self.reduce_mean = P.ReduceMean(keep_dims=False) def construct(self, input_feature): if self.use_fc: input_feature = self.fc(input_feature) if self.dropout_flag: input_feature = self.dropout(input_feature) if self.activation_flag: input_feature = self.activation(input_feature) output_feature = self.reduce_mean(input_feature, 1) return output_feature