|
|
|
@@ -318,10 +318,6 @@ def preprocess_fn(image, box, is_training): |
|
|
|
else: |
|
|
|
input_data = resize_column(*input_data) |
|
|
|
|
|
|
|
photo = (np.random.rand() < config.photo_ratio) |
|
|
|
if photo: |
|
|
|
input_data = photo_crop_column(*input_data) |
|
|
|
|
|
|
|
input_data = image_bgr_rgb(*input_data) |
|
|
|
|
|
|
|
output_data = input_data |
|
|
|
@@ -432,19 +428,19 @@ def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="fast |
|
|
|
writer.write_raw_data([row]) |
|
|
|
writer.commit() |
|
|
|
|
|
|
|
|
|
|
|
def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, device_num=1, rank_id=0, |
|
|
|
is_training=True, num_parallel_workers=8): |
|
|
|
is_training=True, num_parallel_workers=4): |
|
|
|
"""Creatr FasterRcnn dataset with MindDataset.""" |
|
|
|
ds = de.MindDataset(mindrecord_file, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank_id, |
|
|
|
num_parallel_workers=num_parallel_workers, shuffle=is_training) |
|
|
|
num_parallel_workers=1, shuffle=is_training) |
|
|
|
decode = C.Decode() |
|
|
|
ds = ds.map(input_columns=["image"], operations=decode) |
|
|
|
ds = ds.map(input_columns=["image"], operations=decode, num_parallel_workers=1) |
|
|
|
compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training)) |
|
|
|
|
|
|
|
hwc_to_chw = C.HWC2CHW() |
|
|
|
normalize_op = C.Normalize((123.675, 116.28, 103.53), (58.395, 57.12, 57.375)) |
|
|
|
horizontally_op = C.RandomHorizontalFlip(1) |
|
|
|
type_cast0 = CC.TypeCast(mstype.float32) |
|
|
|
type_cast1 = CC.TypeCast(mstype.float16) |
|
|
|
type_cast2 = CC.TypeCast(mstype.int32) |
|
|
|
type_cast3 = CC.TypeCast(mstype.bool_) |
|
|
|
@@ -453,17 +449,18 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi |
|
|
|
ds = ds.map(input_columns=["image", "annotation"], |
|
|
|
output_columns=["image", "image_shape", "box", "label", "valid_num"], |
|
|
|
columns_order=["image", "image_shape", "box", "label", "valid_num"], |
|
|
|
operations=compose_map_func, num_parallel_workers=4) |
|
|
|
|
|
|
|
ds = ds.map(input_columns=["image"], operations=[normalize_op, type_cast0], |
|
|
|
num_parallel_workers=num_parallel_workers) |
|
|
|
operations=compose_map_func, num_parallel_workers=num_parallel_workers) |
|
|
|
|
|
|
|
flip = (np.random.rand() < config.flip_ratio) |
|
|
|
if flip: |
|
|
|
ds = ds.map(input_columns=["image"], operations=[horizontally_op], |
|
|
|
num_parallel_workers=num_parallel_workers) |
|
|
|
ds = ds.map(input_columns=["image"], operations=[normalize_op, horizontally_op, hwc_to_chw, type_cast1], |
|
|
|
num_parallel_workers=24) |
|
|
|
ds = ds.map(input_columns=["image", "image_shape", "box", "label", "valid_num"], |
|
|
|
operations=flipped_generation, num_parallel_workers=4) |
|
|
|
operations=flipped_generation, num_parallel_workers=num_parallel_workers) |
|
|
|
else: |
|
|
|
ds = ds.map(input_columns=["image"], operations=[normalize_op, hwc_to_chw, type_cast1], |
|
|
|
num_parallel_workers=24) |
|
|
|
|
|
|
|
else: |
|
|
|
ds = ds.map(input_columns=["image", "annotation"], |
|
|
|
output_columns=["image", "image_shape", "box", "label", "valid_num"], |
|
|
|
@@ -471,11 +468,10 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi |
|
|
|
operations=compose_map_func, |
|
|
|
num_parallel_workers=num_parallel_workers) |
|
|
|
|
|
|
|
ds = ds.map(input_columns=["image"], operations=[normalize_op, type_cast0], |
|
|
|
num_parallel_workers=num_parallel_workers) |
|
|
|
ds = ds.map(input_columns=["image"], operations=[normalize_op, hwc_to_chw, type_cast1], |
|
|
|
num_parallel_workers=24) |
|
|
|
|
|
|
|
# transpose_column from python to c |
|
|
|
ds = ds.map(input_columns=["image"], operations=[hwc_to_chw, type_cast1]) |
|
|
|
ds = ds.map(input_columns=["image_shape"], operations=[type_cast1]) |
|
|
|
ds = ds.map(input_columns=["box"], operations=[type_cast1]) |
|
|
|
ds = ds.map(input_columns=["label"], operations=[type_cast2]) |
|
|
|
|