| @@ -318,10 +318,6 @@ def preprocess_fn(image, box, is_training): | |||
| else: | |||
| input_data = resize_column(*input_data) | |||
| photo = (np.random.rand() < config.photo_ratio) | |||
| if photo: | |||
| input_data = photo_crop_column(*input_data) | |||
| input_data = image_bgr_rgb(*input_data) | |||
| output_data = input_data | |||
| @@ -432,19 +428,19 @@ def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="fast | |||
| writer.write_raw_data([row]) | |||
| writer.commit() | |||
| def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, device_num=1, rank_id=0, | |||
| is_training=True, num_parallel_workers=8): | |||
| is_training=True, num_parallel_workers=4): | |||
| """Creatr FasterRcnn dataset with MindDataset.""" | |||
| ds = de.MindDataset(mindrecord_file, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank_id, | |||
| num_parallel_workers=num_parallel_workers, shuffle=is_training) | |||
| num_parallel_workers=1, shuffle=is_training) | |||
| decode = C.Decode() | |||
| ds = ds.map(input_columns=["image"], operations=decode) | |||
| ds = ds.map(input_columns=["image"], operations=decode, num_parallel_workers=1) | |||
| compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training)) | |||
| hwc_to_chw = C.HWC2CHW() | |||
| normalize_op = C.Normalize((123.675, 116.28, 103.53), (58.395, 57.12, 57.375)) | |||
| horizontally_op = C.RandomHorizontalFlip(1) | |||
| type_cast0 = CC.TypeCast(mstype.float32) | |||
| type_cast1 = CC.TypeCast(mstype.float16) | |||
| type_cast2 = CC.TypeCast(mstype.int32) | |||
| type_cast3 = CC.TypeCast(mstype.bool_) | |||
| @@ -453,17 +449,18 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi | |||
| ds = ds.map(input_columns=["image", "annotation"], | |||
| output_columns=["image", "image_shape", "box", "label", "valid_num"], | |||
| columns_order=["image", "image_shape", "box", "label", "valid_num"], | |||
| operations=compose_map_func, num_parallel_workers=4) | |||
| ds = ds.map(input_columns=["image"], operations=[normalize_op, type_cast0], | |||
| num_parallel_workers=num_parallel_workers) | |||
| operations=compose_map_func, num_parallel_workers=num_parallel_workers) | |||
| flip = (np.random.rand() < config.flip_ratio) | |||
| if flip: | |||
| ds = ds.map(input_columns=["image"], operations=[horizontally_op], | |||
| num_parallel_workers=num_parallel_workers) | |||
| ds = ds.map(input_columns=["image"], operations=[normalize_op, horizontally_op, hwc_to_chw, type_cast1], | |||
| num_parallel_workers=24) | |||
| ds = ds.map(input_columns=["image", "image_shape", "box", "label", "valid_num"], | |||
| operations=flipped_generation, num_parallel_workers=4) | |||
| operations=flipped_generation, num_parallel_workers=num_parallel_workers) | |||
| else: | |||
| ds = ds.map(input_columns=["image"], operations=[normalize_op, hwc_to_chw, type_cast1], | |||
| num_parallel_workers=24) | |||
| else: | |||
| ds = ds.map(input_columns=["image", "annotation"], | |||
| output_columns=["image", "image_shape", "box", "label", "valid_num"], | |||
| @@ -471,11 +468,10 @@ def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, devi | |||
| operations=compose_map_func, | |||
| num_parallel_workers=num_parallel_workers) | |||
| ds = ds.map(input_columns=["image"], operations=[normalize_op, type_cast0], | |||
| num_parallel_workers=num_parallel_workers) | |||
| ds = ds.map(input_columns=["image"], operations=[normalize_op, hwc_to_chw, type_cast1], | |||
| num_parallel_workers=24) | |||
| # transpose_column from python to c | |||
| ds = ds.map(input_columns=["image"], operations=[hwc_to_chw, type_cast1]) | |||
| ds = ds.map(input_columns=["image_shape"], operations=[type_cast1]) | |||
| ds = ds.map(input_columns=["box"], operations=[type_cast1]) | |||
| ds = ds.map(input_columns=["label"], operations=[type_cast2]) | |||