| @@ -0,0 +1,64 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor, context | |||
| from mindspore.nn import TrainOneStepCell, WithLossCell | |||
| context.set_context(enable_sparse=True, | |||
| mode=context.GRAPH_MODE) | |||
| class NetWithEmbeddingLookUp(nn.Cell): | |||
| def __init__(self, vocab_size, embedding_size, target="CPU"): | |||
| super(NetWithEmbeddingLookUp, self).__init__() | |||
| self.embedding_lookup = \ | |||
| nn.EmbeddingLookup(vocab_size=vocab_size, | |||
| embedding_size=embedding_size, | |||
| param_init="ones", target=target) | |||
| def construct(self, indices): | |||
| out = self.embedding_lookup(indices) | |||
| return out | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_sit_embedding_lookup_net(): | |||
| indices = Tensor(np.array([0, 1, 2]).astype(np.int32)) | |||
| label = Tensor(np.random.randn(3, 8).astype(np.float32)) | |||
| net1 = NetWithEmbeddingLookUp(vocab_size=8, embedding_size=8, target="CPU") | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(reduction="mean") | |||
| optimizer1 = nn.Adam(params=net1.trainable_params(), learning_rate=0.1) | |||
| optimizer1.unique = True | |||
| train_network1 = TrainOneStepCell(WithLossCell(net1, loss), optimizer1) | |||
| train_network1.set_train() | |||
| out1 = train_network1(indices, label) | |||
| net2 = NetWithEmbeddingLookUp(vocab_size=8, embedding_size=8, target="CPU") | |||
| optimizer2 = nn.Adam(params=net2.trainable_params(), learning_rate=0.1) | |||
| optimizer2.unique = False | |||
| optimizer2.target = "CPU" | |||
| train_network2 = TrainOneStepCell(WithLossCell(net2, loss), optimizer2) | |||
| train_network2.set_train() | |||
| out2 = train_network2(indices, label) | |||
| assert np.allclose(out1.asnumpy(), out2.asnumpy(), 0.001, 0.001) | |||