| @@ -0,0 +1,64 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import pytest | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor, context | |||||
| from mindspore.nn import TrainOneStepCell, WithLossCell | |||||
| context.set_context(enable_sparse=True, | |||||
| mode=context.GRAPH_MODE) | |||||
| class NetWithEmbeddingLookUp(nn.Cell): | |||||
| def __init__(self, vocab_size, embedding_size, target="CPU"): | |||||
| super(NetWithEmbeddingLookUp, self).__init__() | |||||
| self.embedding_lookup = \ | |||||
| nn.EmbeddingLookup(vocab_size=vocab_size, | |||||
| embedding_size=embedding_size, | |||||
| param_init="ones", target=target) | |||||
| def construct(self, indices): | |||||
| out = self.embedding_lookup(indices) | |||||
| return out | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_arm_ascend_training | |||||
| @pytest.mark.platform_x86_ascend_training | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_sit_embedding_lookup_net(): | |||||
| indices = Tensor(np.array([0, 1, 2]).astype(np.int32)) | |||||
| label = Tensor(np.random.randn(3, 8).astype(np.float32)) | |||||
| net1 = NetWithEmbeddingLookUp(vocab_size=8, embedding_size=8, target="CPU") | |||||
| loss = nn.SoftmaxCrossEntropyWithLogits(reduction="mean") | |||||
| optimizer1 = nn.Adam(params=net1.trainable_params(), learning_rate=0.1) | |||||
| optimizer1.unique = True | |||||
| train_network1 = TrainOneStepCell(WithLossCell(net1, loss), optimizer1) | |||||
| train_network1.set_train() | |||||
| out1 = train_network1(indices, label) | |||||
| net2 = NetWithEmbeddingLookUp(vocab_size=8, embedding_size=8, target="CPU") | |||||
| optimizer2 = nn.Adam(params=net2.trainable_params(), learning_rate=0.1) | |||||
| optimizer2.unique = False | |||||
| optimizer2.target = "CPU" | |||||
| train_network2 = TrainOneStepCell(WithLossCell(net2, loss), optimizer2) | |||||
| train_network2.set_train() | |||||
| out2 = train_network2(indices, label) | |||||
| assert np.allclose(out1.asnumpy(), out2.asnumpy(), 0.001, 0.001) | |||||