Browse Source

!4418 Add UniqueWithPad cpu kernel

Merge pull request !4418 from huanghui/unique-with-pad-cpu-kernel
tags/v0.7.0-beta
mindspore-ci-bot Gitee 5 years ago
parent
commit
e9629f95e1
4 changed files with 230 additions and 0 deletions
  1. +82
    -0
      mindspore/ccsrc/backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.cc
  2. +65
    -0
      mindspore/ccsrc/backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.h
  3. +1
    -0
      tests/ut/cpp/CMakeLists.txt
  4. +82
    -0
      tests/ut/cpp/kernel/cpu/unique_with_pad_cpu_kernel_test.cc

+ 82
- 0
mindspore/ccsrc/backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.cc View File

@@ -0,0 +1,82 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.h"
#include "runtime/device/cpu/cpu_device_address.h"

namespace mindspore {
namespace kernel {
void UniqueWithPadCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
n_ = SizeToLong(input_shape[0]);
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}

bool UniqueWithPadCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeInt32) {
LaunchKernel<int>(inputs, outputs);
} else if (dtype_ == kNumberTypeInt64) {
LaunchKernel<int64_t>(inputs, outputs);
} else {
MS_LOG(EXCEPTION) << "Only unsupported int32 or int64 dtype";
}
return true;
}

template <typename T>
void UniqueWithPadCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs) {
T *a = reinterpret_cast<T *>(inputs[0]->addr);
T pad_num = *reinterpret_cast<T *>(inputs[1]->addr);
T *out = reinterpret_cast<T *>(outputs[0]->addr);
T *idx_vec = reinterpret_cast<T *>(outputs[1]->addr);

for (int64_t i = 0; i < n_; ++i) {
out[i] = pad_num;
}
std::unordered_map<T, int> uniq;
uniq.reserve(n_);
for (int64_t i = 0, j = 0; i < n_; ++i) {
auto it = uniq.emplace(a[i], j);
idx_vec[i] = it.first->second;
if (it.second) {
++j;
}
}
for (const auto &it : uniq) {
out[it.second] = it.first;
}
}

void UniqueWithPadCPUKernel::CheckParam(const CNodePtr &kernel_node) {
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
if (input_shape.size() != 1) {
MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size() << ", but UniqueCPUKernel only support 1d.";
}
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but UniqueCPUKernel needs 2 input.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 2) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but UniqueCPUKernel needs 2 output.";
}
}
} // namespace kernel
} // namespace mindspore

+ 65
- 0
mindspore/ccsrc/backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.h View File

@@ -0,0 +1,65 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_WITH_PAD_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_WITH_PAD_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include <unordered_map>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"

namespace mindspore {
namespace kernel {
class UniqueWithPadCPUKernel : public CPUKernel {
public:
UniqueWithPadCPUKernel() = default;
~UniqueWithPadCPUKernel() override = default;

void InitKernel(const CNodePtr &kernel_node) override;

bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;

template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);

private:
void CheckParam(const CNodePtr &kernel_node);
int64_t n_;
TypeId dtype_;
};

MS_REG_CPU_KERNEL(UniqueWithPad,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
UniqueWithPadCPUKernel);

MS_REG_CPU_KERNEL(UniqueWithPad,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt64),
UniqueWithPadCPUKernel);

} // namespace kernel
} // namespace mindspore

#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_WITH_PAD_CPU_KERNEL_H_

+ 1
- 0
tests/ut/cpp/CMakeLists.txt View File

@@ -129,6 +129,7 @@ file(GLOB_RECURSE MINDSPORE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_lazy_adam_cpu_kernel.cc"
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc"
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/unique_cpu_kernel.cc"
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.cc"
)

if (CMAKE_SYSTEM_NAME MATCHES "Windows")


+ 82
- 0
tests/ut/cpp/kernel/cpu/unique_with_pad_cpu_kernel_test.cc View File

@@ -0,0 +1,82 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <vector>
#include "common/common_test.h"
#define private public
#define protected public
#include "backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.h"
#undef private
#undef protected

namespace mindspore {
namespace kernel {
class UniqueWithPadCpuKernelTest : public UT::Common {
public:
UniqueWithPadCpuKernelTest() : unique_with_pad_(std::make_shared<UniqueWithPadCPUKernel>()) {}

void SetUp() override {
unique_with_pad_->n_ = 10;
unique_with_pad_->dtype_ = kNumberTypeInt32;
inputs_.clear();
workspace_.clear();
outputs_.clear();
}

AddressPtr CreateKernelAddress(void *addr) {
auto kernel_addr = std::make_shared<Address>();
kernel_addr->addr = addr;
return kernel_addr;
}

void CreateInputAddress() {
inputs_.push_back(CreateKernelAddress(x_.data()));
inputs_.push_back(CreateKernelAddress(&pad_dim_));
;
}

void CreateOutputAddress() {
outputs_.push_back(CreateKernelAddress(out_.data()));
outputs_.push_back(CreateKernelAddress(idx_.data()));
}

std::vector<int> x_;
int pad_dim_;
std::vector<int> out_;
std::vector<int> idx_;
std::vector<AddressPtr> inputs_;
std::vector<AddressPtr> workspace_;
std::vector<AddressPtr> outputs_;
std::shared_ptr<UniqueWithPadCPUKernel> unique_with_pad_;
};

TEST_F(UniqueWithPadCpuKernelTest, compute_test) {
x_ = {1, 1, 5, 5, 4, 4, 3, 3, 2, 2};
pad_dim_ = 8;
out_ = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
idx_ = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
CreateInputAddress();
CreateOutputAddress();
unique_with_pad_->Launch(inputs_, workspace_, outputs_);

// check compute result
std::vector<int> expect_out{1, 5, 4, 3, 2, 8, 8, 8, 8, 8};
std::vector<int> expect_idx{0, 0, 1, 1, 2, 2, 3, 3, 4, 4};
EXPECT_TRUE(out_ == expect_out);
EXPECT_TRUE(idx_ == expect_idx);
}
} // namespace kernel
} // namespace mindspore

Loading…
Cancel
Save