Merge pull request !4418 from huanghui/unique-with-pad-cpu-kerneltags/v0.7.0-beta
| @@ -0,0 +1,82 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.h" | |||
| #include "runtime/device/cpu/cpu_device_address.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| void UniqueWithPadCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| CheckParam(kernel_node); | |||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| n_ = SizeToLong(input_shape[0]); | |||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||
| } | |||
| bool UniqueWithPadCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| if (dtype_ == kNumberTypeInt32) { | |||
| LaunchKernel<int>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeInt64) { | |||
| LaunchKernel<int64_t>(inputs, outputs); | |||
| } else { | |||
| MS_LOG(EXCEPTION) << "Only unsupported int32 or int64 dtype"; | |||
| } | |||
| return true; | |||
| } | |||
| template <typename T> | |||
| void UniqueWithPadCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<AddressPtr> &outputs) { | |||
| T *a = reinterpret_cast<T *>(inputs[0]->addr); | |||
| T pad_num = *reinterpret_cast<T *>(inputs[1]->addr); | |||
| T *out = reinterpret_cast<T *>(outputs[0]->addr); | |||
| T *idx_vec = reinterpret_cast<T *>(outputs[1]->addr); | |||
| for (int64_t i = 0; i < n_; ++i) { | |||
| out[i] = pad_num; | |||
| } | |||
| std::unordered_map<T, int> uniq; | |||
| uniq.reserve(n_); | |||
| for (int64_t i = 0, j = 0; i < n_; ++i) { | |||
| auto it = uniq.emplace(a[i], j); | |||
| idx_vec[i] = it.first->second; | |||
| if (it.second) { | |||
| ++j; | |||
| } | |||
| } | |||
| for (const auto &it : uniq) { | |||
| out[it.second] = it.first; | |||
| } | |||
| } | |||
| void UniqueWithPadCPUKernel::CheckParam(const CNodePtr &kernel_node) { | |||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| if (input_shape.size() != 1) { | |||
| MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size() << ", but UniqueCPUKernel only support 1d."; | |||
| } | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 2) { | |||
| MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but UniqueCPUKernel needs 2 input."; | |||
| } | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 2) { | |||
| MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but UniqueCPUKernel needs 2 output."; | |||
| } | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,65 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_WITH_PAD_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_WITH_PAD_CPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include <memory> | |||
| #include <unordered_map> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class UniqueWithPadCPUKernel : public CPUKernel { | |||
| public: | |||
| UniqueWithPadCPUKernel() = default; | |||
| ~UniqueWithPadCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| template <typename T> | |||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||
| private: | |||
| void CheckParam(const CNodePtr &kernel_node); | |||
| int64_t n_; | |||
| TypeId dtype_; | |||
| }; | |||
| MS_REG_CPU_KERNEL(UniqueWithPad, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32), | |||
| UniqueWithPadCPUKernel); | |||
| MS_REG_CPU_KERNEL(UniqueWithPad, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt64), | |||
| UniqueWithPadCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_WITH_PAD_CPU_KERNEL_H_ | |||
| @@ -129,6 +129,7 @@ file(GLOB_RECURSE MINDSPORE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} | |||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_lazy_adam_cpu_kernel.cc" | |||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc" | |||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/unique_cpu_kernel.cc" | |||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.cc" | |||
| ) | |||
| if (CMAKE_SYSTEM_NAME MATCHES "Windows") | |||
| @@ -0,0 +1,82 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <vector> | |||
| #include "common/common_test.h" | |||
| #define private public | |||
| #define protected public | |||
| #include "backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.h" | |||
| #undef private | |||
| #undef protected | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class UniqueWithPadCpuKernelTest : public UT::Common { | |||
| public: | |||
| UniqueWithPadCpuKernelTest() : unique_with_pad_(std::make_shared<UniqueWithPadCPUKernel>()) {} | |||
| void SetUp() override { | |||
| unique_with_pad_->n_ = 10; | |||
| unique_with_pad_->dtype_ = kNumberTypeInt32; | |||
| inputs_.clear(); | |||
| workspace_.clear(); | |||
| outputs_.clear(); | |||
| } | |||
| AddressPtr CreateKernelAddress(void *addr) { | |||
| auto kernel_addr = std::make_shared<Address>(); | |||
| kernel_addr->addr = addr; | |||
| return kernel_addr; | |||
| } | |||
| void CreateInputAddress() { | |||
| inputs_.push_back(CreateKernelAddress(x_.data())); | |||
| inputs_.push_back(CreateKernelAddress(&pad_dim_)); | |||
| ; | |||
| } | |||
| void CreateOutputAddress() { | |||
| outputs_.push_back(CreateKernelAddress(out_.data())); | |||
| outputs_.push_back(CreateKernelAddress(idx_.data())); | |||
| } | |||
| std::vector<int> x_; | |||
| int pad_dim_; | |||
| std::vector<int> out_; | |||
| std::vector<int> idx_; | |||
| std::vector<AddressPtr> inputs_; | |||
| std::vector<AddressPtr> workspace_; | |||
| std::vector<AddressPtr> outputs_; | |||
| std::shared_ptr<UniqueWithPadCPUKernel> unique_with_pad_; | |||
| }; | |||
| TEST_F(UniqueWithPadCpuKernelTest, compute_test) { | |||
| x_ = {1, 1, 5, 5, 4, 4, 3, 3, 2, 2}; | |||
| pad_dim_ = 8; | |||
| out_ = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; | |||
| idx_ = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; | |||
| CreateInputAddress(); | |||
| CreateOutputAddress(); | |||
| unique_with_pad_->Launch(inputs_, workspace_, outputs_); | |||
| // check compute result | |||
| std::vector<int> expect_out{1, 5, 4, 3, 2, 8, 8, 8, 8, 8}; | |||
| std::vector<int> expect_idx{0, 0, 1, 1, 2, 2, 3, 3, 4, 4}; | |||
| EXPECT_TRUE(out_ == expect_out); | |||
| EXPECT_TRUE(idx_ == expect_idx); | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||