Merge pull request !4418 from huanghui/unique-with-pad-cpu-kerneltags/v0.7.0-beta
| @@ -0,0 +1,82 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.h" | |||||
| #include "runtime/device/cpu/cpu_device_address.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| void UniqueWithPadCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||||
| CheckParam(kernel_node); | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| n_ = SizeToLong(input_shape[0]); | |||||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||||
| } | |||||
| bool UniqueWithPadCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||||
| const std::vector<kernel::AddressPtr> &outputs) { | |||||
| if (dtype_ == kNumberTypeInt32) { | |||||
| LaunchKernel<int>(inputs, outputs); | |||||
| } else if (dtype_ == kNumberTypeInt64) { | |||||
| LaunchKernel<int64_t>(inputs, outputs); | |||||
| } else { | |||||
| MS_LOG(EXCEPTION) << "Only unsupported int32 or int64 dtype"; | |||||
| } | |||||
| return true; | |||||
| } | |||||
| template <typename T> | |||||
| void UniqueWithPadCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, | |||||
| const std::vector<AddressPtr> &outputs) { | |||||
| T *a = reinterpret_cast<T *>(inputs[0]->addr); | |||||
| T pad_num = *reinterpret_cast<T *>(inputs[1]->addr); | |||||
| T *out = reinterpret_cast<T *>(outputs[0]->addr); | |||||
| T *idx_vec = reinterpret_cast<T *>(outputs[1]->addr); | |||||
| for (int64_t i = 0; i < n_; ++i) { | |||||
| out[i] = pad_num; | |||||
| } | |||||
| std::unordered_map<T, int> uniq; | |||||
| uniq.reserve(n_); | |||||
| for (int64_t i = 0, j = 0; i < n_; ++i) { | |||||
| auto it = uniq.emplace(a[i], j); | |||||
| idx_vec[i] = it.first->second; | |||||
| if (it.second) { | |||||
| ++j; | |||||
| } | |||||
| } | |||||
| for (const auto &it : uniq) { | |||||
| out[it.second] = it.first; | |||||
| } | |||||
| } | |||||
| void UniqueWithPadCPUKernel::CheckParam(const CNodePtr &kernel_node) { | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| if (input_shape.size() != 1) { | |||||
| MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size() << ", but UniqueCPUKernel only support 1d."; | |||||
| } | |||||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||||
| if (input_num != 2) { | |||||
| MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but UniqueCPUKernel needs 2 input."; | |||||
| } | |||||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||||
| if (output_num != 2) { | |||||
| MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but UniqueCPUKernel needs 2 output."; | |||||
| } | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,65 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_WITH_PAD_CPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_WITH_PAD_CPU_KERNEL_H_ | |||||
| #include <vector> | |||||
| #include <memory> | |||||
| #include <unordered_map> | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| class UniqueWithPadCPUKernel : public CPUKernel { | |||||
| public: | |||||
| UniqueWithPadCPUKernel() = default; | |||||
| ~UniqueWithPadCPUKernel() override = default; | |||||
| void InitKernel(const CNodePtr &kernel_node) override; | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) override; | |||||
| template <typename T> | |||||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||||
| private: | |||||
| void CheckParam(const CNodePtr &kernel_node); | |||||
| int64_t n_; | |||||
| TypeId dtype_; | |||||
| }; | |||||
| MS_REG_CPU_KERNEL(UniqueWithPad, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddOutputAttr(kNumberTypeInt32) | |||||
| .AddOutputAttr(kNumberTypeInt32), | |||||
| UniqueWithPadCPUKernel); | |||||
| MS_REG_CPU_KERNEL(UniqueWithPad, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddOutputAttr(kNumberTypeInt64) | |||||
| .AddOutputAttr(kNumberTypeInt64), | |||||
| UniqueWithPadCPUKernel); | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_WITH_PAD_CPU_KERNEL_H_ | |||||
| @@ -129,6 +129,7 @@ file(GLOB_RECURSE MINDSPORE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} | |||||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_lazy_adam_cpu_kernel.cc" | "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_lazy_adam_cpu_kernel.cc" | ||||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc" | "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc" | ||||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/unique_cpu_kernel.cc" | "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/unique_cpu_kernel.cc" | ||||
| "../../../mindspore/ccsrc/backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.cc" | |||||
| ) | ) | ||||
| if (CMAKE_SYSTEM_NAME MATCHES "Windows") | if (CMAKE_SYSTEM_NAME MATCHES "Windows") | ||||
| @@ -0,0 +1,82 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <vector> | |||||
| #include "common/common_test.h" | |||||
| #define private public | |||||
| #define protected public | |||||
| #include "backend/kernel_compiler/cpu/unique_with_pad_cpu_kernel.h" | |||||
| #undef private | |||||
| #undef protected | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| class UniqueWithPadCpuKernelTest : public UT::Common { | |||||
| public: | |||||
| UniqueWithPadCpuKernelTest() : unique_with_pad_(std::make_shared<UniqueWithPadCPUKernel>()) {} | |||||
| void SetUp() override { | |||||
| unique_with_pad_->n_ = 10; | |||||
| unique_with_pad_->dtype_ = kNumberTypeInt32; | |||||
| inputs_.clear(); | |||||
| workspace_.clear(); | |||||
| outputs_.clear(); | |||||
| } | |||||
| AddressPtr CreateKernelAddress(void *addr) { | |||||
| auto kernel_addr = std::make_shared<Address>(); | |||||
| kernel_addr->addr = addr; | |||||
| return kernel_addr; | |||||
| } | |||||
| void CreateInputAddress() { | |||||
| inputs_.push_back(CreateKernelAddress(x_.data())); | |||||
| inputs_.push_back(CreateKernelAddress(&pad_dim_)); | |||||
| ; | |||||
| } | |||||
| void CreateOutputAddress() { | |||||
| outputs_.push_back(CreateKernelAddress(out_.data())); | |||||
| outputs_.push_back(CreateKernelAddress(idx_.data())); | |||||
| } | |||||
| std::vector<int> x_; | |||||
| int pad_dim_; | |||||
| std::vector<int> out_; | |||||
| std::vector<int> idx_; | |||||
| std::vector<AddressPtr> inputs_; | |||||
| std::vector<AddressPtr> workspace_; | |||||
| std::vector<AddressPtr> outputs_; | |||||
| std::shared_ptr<UniqueWithPadCPUKernel> unique_with_pad_; | |||||
| }; | |||||
| TEST_F(UniqueWithPadCpuKernelTest, compute_test) { | |||||
| x_ = {1, 1, 5, 5, 4, 4, 3, 3, 2, 2}; | |||||
| pad_dim_ = 8; | |||||
| out_ = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; | |||||
| idx_ = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; | |||||
| CreateInputAddress(); | |||||
| CreateOutputAddress(); | |||||
| unique_with_pad_->Launch(inputs_, workspace_, outputs_); | |||||
| // check compute result | |||||
| std::vector<int> expect_out{1, 5, 4, 3, 2, 8, 8, 8, 8, 8}; | |||||
| std::vector<int> expect_idx{0, 0, 1, 1, 2, 2, 3, 3, 4, 4}; | |||||
| EXPECT_TRUE(out_ == expect_out); | |||||
| EXPECT_TRUE(idx_ == expect_idx); | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||