| @@ -1,39 +1,42 @@ | |||
| Deeplab-V3 Example | |||
| # Deeplab-V3 Example | |||
| Description | |||
| ## Description | |||
| This is an example of training DeepLabv3 with PASCAL VOC 2012 dataset in MindSpore. | |||
| Paper Rethinking Atrous Convolution for Semantic Image Segmentation | |||
| Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam | |||
| Requirements | |||
| Install MindSpore. | |||
| Download the VOC 2012 dataset for training. | |||
| For more information, please check the resources below: | |||
| MindSpore tutorials | |||
| MindSpore API | |||
| ## Requirements | |||
| - Install [MindSpore](https://www.mindspore.cn/install/en). | |||
| - Download the VOC 2012 dataset for training. | |||
| Notes: If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file. | |||
| > Notes: | |||
| If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file. | |||
| Running the Example | |||
| Training | |||
| Set options in config.py. | |||
| Run run_standalone_train.sh for non-distributed training. | |||
| sh scripts/run_standalone_train.sh DEVICE_ID EPOCH_SIZE DATA_DIR | |||
| Run run_distribute_train.sh for distributed training. | |||
| sh scripts/run_distribute_train.sh DEVICE_NUM EPOCH_SIZE DATA_DIR MINDSPORE_HCCL_CONFIG_PATH | |||
| Evaluation | |||
| ## Running the Example | |||
| ### Training | |||
| - Set options in config.py. | |||
| - Run `run_standalone_train.sh` for non-distributed training. | |||
| ``` bash | |||
| sh scripts/run_standalone_train.sh DEVICE_ID EPOCH_SIZE DATA_DIR | |||
| ``` | |||
| - Run `run_distribute_train.sh` for distributed training. | |||
| ``` bash | |||
| sh scripts/run_distribute_train.sh DEVICE_NUM EPOCH_SIZE DATA_DIR MINDSPORE_HCCL_CONFIG_PATH | |||
| ``` | |||
| ### Evaluation | |||
| Set options in evaluation_config.py. Make sure the 'data_file' and 'finetune_ckpt' are set to your own path. | |||
| Run run_eval.sh for evaluation. | |||
| sh scripts/run_eval.sh DEVICE_ID DATA_DIR | |||
| - Run run_eval.sh for evaluation. | |||
| ``` bash | |||
| sh scripts/run_eval.sh DEVICE_ID DATA_DIR | |||
| ``` | |||
| Options and Parameters | |||
| ## Options and Parameters | |||
| It contains of parameters of Deeplab-V3 model and options for training, which is set in file config.py. | |||
| Options: | |||
| ### Options: | |||
| ``` | |||
| config.py: | |||
| learning_rate Learning rate, default is 0.0014. | |||
| weight_decay Weight decay, default is 5e-5. | |||
| @@ -49,10 +52,11 @@ config.py: | |||
| decoder_output_stride The ratio of input to output spatial resolution when employing decoder | |||
| to refine segmentation results, default is None. | |||
| image_pyramid Input scales for multi-scale feature extraction, default is None. | |||
| ``` | |||
| Parameters: | |||
| ### Parameters: | |||
| ``` | |||
| Parameters for dataset and network: | |||
| distribute Run distribute, default is false. | |||
| epoch_size Epoch size, default is 6. | |||
| @@ -61,4 +65,5 @@ Parameters for dataset and network: | |||
| checkpoint_url Checkpoint path, default is None. | |||
| enable_save_ckpt Enable save checkpoint, default is true. | |||
| save_checkpoint_steps Save checkpoint steps, default is 1000. | |||
| save_checkpoint_num Save checkpoint numbers, default is 1. | |||
| save_checkpoint_num Save checkpoint numbers, default is 1. | |||
| ``` | |||