From e66b23b357df69d90315041ce2c245b7a1732f9e Mon Sep 17 00:00:00 2001 From: unknown Date: Fri, 29 May 2020 12:00:10 +0800 Subject: [PATCH] add readme --- model_zoo/deeplabv3/README.md | 57 +++++++++++++++++++---------------- 1 file changed, 31 insertions(+), 26 deletions(-) diff --git a/model_zoo/deeplabv3/README.md b/model_zoo/deeplabv3/README.md index 977da7040a..f2c5fe0bc7 100644 --- a/model_zoo/deeplabv3/README.md +++ b/model_zoo/deeplabv3/README.md @@ -1,39 +1,42 @@ -Deeplab-V3 Example +# Deeplab-V3 Example -Description +## Description This is an example of training DeepLabv3 with PASCAL VOC 2012 dataset in MindSpore. Paper Rethinking Atrous Convolution for Semantic Image Segmentation Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam -Requirements -Install MindSpore. -Download the VOC 2012 dataset for training. -For more information, please check the resources below: -MindSpore tutorials -MindSpore API +## Requirements +- Install [MindSpore](https://www.mindspore.cn/install/en). +- Download the VOC 2012 dataset for training. -Notes: If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file. +> Notes: + If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file. -Running the Example - -Training -Set options in config.py. -Run run_standalone_train.sh for non-distributed training. -sh scripts/run_standalone_train.sh DEVICE_ID EPOCH_SIZE DATA_DIR -Run run_distribute_train.sh for distributed training. -sh scripts/run_distribute_train.sh DEVICE_NUM EPOCH_SIZE DATA_DIR MINDSPORE_HCCL_CONFIG_PATH - -Evaluation +## Running the Example +### Training +- Set options in config.py. +- Run `run_standalone_train.sh` for non-distributed training. + ``` bash + sh scripts/run_standalone_train.sh DEVICE_ID EPOCH_SIZE DATA_DIR + ``` +- Run `run_distribute_train.sh` for distributed training. + ``` bash + sh scripts/run_distribute_train.sh DEVICE_NUM EPOCH_SIZE DATA_DIR MINDSPORE_HCCL_CONFIG_PATH + ``` +### Evaluation Set options in evaluation_config.py. Make sure the 'data_file' and 'finetune_ckpt' are set to your own path. -Run run_eval.sh for evaluation. -sh scripts/run_eval.sh DEVICE_ID DATA_DIR +- Run run_eval.sh for evaluation. + ``` bash + sh scripts/run_eval.sh DEVICE_ID DATA_DIR + ``` -Options and Parameters +## Options and Parameters It contains of parameters of Deeplab-V3 model and options for training, which is set in file config.py. -Options: +### Options: +``` config.py: learning_rate Learning rate, default is 0.0014. weight_decay Weight decay, default is 5e-5. @@ -49,10 +52,11 @@ config.py: decoder_output_stride The ratio of input to output spatial resolution when employing decoder to refine segmentation results, default is None. image_pyramid Input scales for multi-scale feature extraction, default is None. - +``` -Parameters: +### Parameters: +``` Parameters for dataset and network: distribute Run distribute, default is false. epoch_size Epoch size, default is 6. @@ -61,4 +65,5 @@ Parameters for dataset and network: checkpoint_url Checkpoint path, default is None. enable_save_ckpt Enable save checkpoint, default is true. save_checkpoint_steps Save checkpoint steps, default is 1000. - save_checkpoint_num Save checkpoint numbers, default is 1. \ No newline at end of file + save_checkpoint_num Save checkpoint numbers, default is 1. +``` \ No newline at end of file