Merge pull request !1426 from chengang/fix_pylinttags/v0.5.0-beta
| @@ -48,15 +48,15 @@ def test_argmax(): | |||
| expect2 = np.array([1, 0, 0, 0]).astype(np.int32) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| Argmax = NetArgmax() | |||
| output = Argmax(x) | |||
| argmax = NetArgmax() | |||
| output = argmax(x) | |||
| assert (output[0].asnumpy() == expect1).all() | |||
| assert (output[1].asnumpy() == expect2).all() | |||
| assert (output[2].asnumpy() == expect2).all() | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| Argmax1 = NetArgmax() | |||
| output1 = Argmax(x) | |||
| argmax1 = NetArgmax() | |||
| output1 = argmax1(x) | |||
| assert (output1[0].asnumpy() == expect1).all() | |||
| assert (output1[1].asnumpy() == expect2).all() | |||
| assert (output1[2].asnumpy() == expect2).all() | |||
| @@ -23,13 +23,13 @@ from mindspore.ops import operations as P | |||
| class Net(nn.Cell): | |||
| def __init__(self, value): | |||
| def __init__(self, param): | |||
| super(Net, self).__init__() | |||
| self.var = Parameter(value, name="var") | |||
| self.var = Parameter(param, name="var") | |||
| self.assign = P.Assign() | |||
| def construct(self, value): | |||
| return self.assign(self.var, value) | |||
| def construct(self, param): | |||
| return self.assign(self.var, param) | |||
| x = np.array([[1.2, 1], [1, 0]]).astype(np.float32) | |||
| @@ -20,9 +20,6 @@ import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.common.api import ms_function | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.ops import operations as P | |||
| @@ -38,7 +35,7 @@ class BatchMatMulNet(nn.Cell): | |||
| return self.batch_matmul(x, y) | |||
| def test_4D(): | |||
| def test_4d(): | |||
| input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32) | |||
| input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32) | |||
| @@ -60,7 +57,7 @@ def test_4D(): | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_4D_transpose_a(): | |||
| def test_4d_transpose_a(): | |||
| input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32) | |||
| input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32) | |||
| @@ -82,7 +79,7 @@ def test_4D_transpose_a(): | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_4D_transpose_b(): | |||
| def test_4d_transpose_b(): | |||
| input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32) | |||
| input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32) | |||
| @@ -104,7 +101,7 @@ def test_4D_transpose_b(): | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_4D_transpose_ab(): | |||
| def test_4d_transpose_ab(): | |||
| input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32) | |||
| input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32) | |||
| @@ -122,17 +119,7 @@ def test_4D_transpose_ab(): | |||
| [[5612, 5810, 6008, 6206]]]] | |||
| assert (output.asnumpy() == expect).all() | |||
| class BatchMatMulNet(nn.Cell): | |||
| def __init__(self, transpose_a=False, transpose_b=False): | |||
| super(BatchMatMulNet, self).__init__() | |||
| self.batch_matmul = P.BatchMatMul(transpose_a, transpose_b) | |||
| def construct(self, x, y): | |||
| return self.batch_matmul(x, y) | |||
| def test_4D_fp16(): | |||
| def test_4d_fp16(): | |||
| input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float16) | |||
| input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float16) | |||
| @@ -68,10 +68,10 @@ def test_batchnrom_fold2(): | |||
| current_step = np.array([0]).astype('int32') | |||
| output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean), | |||
| Tensor(running_std), Tensor(running_mean), Tensor(current_step)) | |||
| expect = (x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1, | |||
| 1) if current_step >= freeze_bn else | |||
| x * (running_std / batch_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1, | |||
| 1)) | |||
| expect = ((x + beta.reshape(-1, 1, 1) - | |||
| (gamma * running_mean / running_std).reshape(-1, 1, 1) if current_step >= freeze_bn else | |||
| x * (running_std / batch_std).reshape(-1, 1, 1) + | |||
| (beta - gamma * batch_mean / batch_std).reshape(-1, 1, 1))) | |||
| error = np.ones(shape=expect.shape) * 1.0e-6 | |||
| diff = output.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| @@ -80,10 +80,9 @@ def test_batchnrom_fold2(): | |||
| current_step = np.array([100000]).astype('int32') | |||
| output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean), Tensor(running_std), | |||
| Tensor(running_mean), Tensor(current_step)) | |||
| expect = (x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1, | |||
| 1) if current_step >= freeze_bn else | |||
| x * (batch_std / running_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1, | |||
| 1)) | |||
| expect = ((x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1, 1) | |||
| if current_step >= freeze_bn else x * (batch_std / running_std).reshape(-1, 1, 1) + | |||
| (beta - gamma * batch_mean / batch_std).reshape(-1, 1, 1))) | |||
| error = np.ones(shape=expect.shape) * 1.0e-6 | |||
| diff = output.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| @@ -38,8 +38,8 @@ class Net(nn.Cell): | |||
| def np_result(d_batch_mean, d_batch_std, x, batch_mean, batch_std): | |||
| n = x.shape[0] * x.shape[2] * x.shape[3] | |||
| dx = d_batch_mean.reshape(1, -1, 1, 1) / n + d_batch_std.reshape(1, -1, 1, 1) * ( | |||
| x - batch_mean.reshape(1, -1, 1, 1)) / batch_std.reshape(1, -1, 1, 1) / n | |||
| dx = (d_batch_mean.reshape(1, -1, 1, 1) / n + d_batch_std.reshape(1, -1, 1, 1) * | |||
| (x - batch_mean.reshape(1, -1, 1, 1)) / batch_std.reshape(1, -1, 1, 1) / n) | |||
| return dx | |||
| @@ -86,7 +86,7 @@ def test_batchnorm_fold2(): | |||
| ms_var = Tensor(variance) | |||
| batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var, | |||
| Tensor(current_step)) | |||
| expect1, expect2, expect3, expect4, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12) | |||
| expect1, expect2, expect3, _, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12) | |||
| assert np.allclose(batch_mean.asnumpy(), expect1, rtol=1.e-7, atol=1.e-5) | |||
| assert np.allclose(batch_var.asnumpy(), expect2, rtol=1.e-7, atol=1.e-5) | |||
| assert np.allclose(ms_mean.asnumpy(), expect3, rtol=1.e-7, atol=1.e-5) | |||
| @@ -108,7 +108,7 @@ def test_batchnorm_fold_freeze(): | |||
| ms_var = Tensor(variance) | |||
| batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var, | |||
| Tensor(current_step)) | |||
| expect1, expect2, expect3, expect4, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12) | |||
| _, _, _, _, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12) | |||
| assert np.allclose(batch_mean.asnumpy(), np.zeros_like(mean), rtol=1.e-7, atol=1.e-5) | |||
| assert np.allclose(batch_var.asnumpy(), np.ones_like(mean), rtol=1.e-7, atol=1.e-5) | |||
| assert np.allclose(ms_mean.asnumpy(), mean, rtol=1.e-7, atol=1.e-5) | |||
| @@ -61,9 +61,6 @@ def test_train_forward(): | |||
| [-0.0281, 0.9119, 1.3819, 1.8518], | |||
| [2.7918, 0.4419, -0.4981, 0.9119], | |||
| [1.8518, 0.9119, 2.3218, -0.9680]]]]).astype(np.float32) | |||
| grad = np.array([[ | |||
| [[1, 2, 7, 1], [4, 2, 1, 3], [1, 6, 5, 2], [2, 4, 3, 2]], | |||
| [[9, 4, 3, 5], [1, 3, 7, 6], [5, 7, 9, 9], [1, 4, 6, 8]]]]).astype(np.float32) | |||
| weight = np.ones(2).astype(np.float32) | |||
| bias = np.ones(2).astype(np.float32) | |||
| @@ -16,10 +16,8 @@ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.context as context | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore.nn import Cell | |||
| from mindspore.ops import operations as P | |||
| @@ -47,9 +47,9 @@ def test_cast(): | |||
| net = Net() | |||
| output = net(x0, t0, x1, t1) | |||
| type0 = output[0].asnumpy().dtype | |||
| assert (type0 == 'float16') | |||
| assert type0 == 'float16' | |||
| type1 = output[1].asnumpy().dtype | |||
| assert (type1 == 'float32') | |||
| assert type1 == 'float32' | |||
| @pytest.mark.level0 | |||
| @@ -65,6 +65,6 @@ def test_cast1(): | |||
| net = Net() | |||
| output = net(x0, t0, x1, t1) | |||
| type0 = output[0].asnumpy().dtype | |||
| assert (type0 == 'float32') | |||
| assert type0 == 'float32' | |||
| type1 = output[1].asnumpy().dtype | |||
| assert (type1 == 'float32') | |||
| assert type1 == 'float32' | |||
| @@ -66,13 +66,6 @@ def test_conv2d_backprop_filter(): | |||
| [-3, -2, -3, -16]]]]).astype(np.float32)) | |||
| conv2d_filter = Conv2dFilter() | |||
| output = conv2d_filter(out, x, w) | |||
| print("================================") | |||
| """ | |||
| expect output: | |||
| [[[[ -60, -142, -265] | |||
| [-104, -211, -322] | |||
| [-102, -144, -248]]]] | |||
| """ | |||
| expect = np.array([[[[-60, -142, -265], | |||
| [-104, -211, -322], | |||
| [-102, -144, -248]]]]).astype(np.float32) | |||
| @@ -20,8 +20,6 @@ import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.api import ms_function | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.ops import operations as P | |||
| context.set_context(device_target='GPU') | |||
| @@ -57,16 +57,6 @@ def test_conv2d(): | |||
| conv2d = NetConv2d() | |||
| output = conv2d(x, w) | |||
| assert (output.asnumpy() == expect).all() | |||
| """ | |||
| expect output: | |||
| [[[[ 45. 48. 51.] | |||
| [ 54. 57. 60.] | |||
| [ 63. 66. 69.]] | |||
| [[126. 138. 150.] | |||
| [162. 174. 186.] | |||
| [198. 210. 222.]]]] | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| conv2d = NetConv2d() | |||
| output = conv2d(x, w) | |||
| @@ -14,7 +14,6 @@ | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import os | |||
| import pytest | |||
| import mindspore.context as context | |||
| @@ -51,5 +50,5 @@ def test_correction_mul_grad(): | |||
| expect = [0, 0] | |||
| expect[0] = (dout * np.reshape(batch_std / running_std, (co, 1, 1, 1))) | |||
| expect[1] = (np.sum(dout * x, (1, 2, 3)) / running_std) | |||
| for i, v in enumerate(output): | |||
| assert (np.allclose(output[i].asnumpy(), expect[i], rtol=1.e-5, atol=1.e-5)) | |||
| for i, _ in enumerate(output): | |||
| assert np.allclose(output[i].asnumpy(), expect[i], rtol=1.e-5, atol=1.e-5) | |||
| @@ -50,4 +50,4 @@ def test_correction_mul(): | |||
| diff = output.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| assert np.all(diff > error * -1) | |||
| assert (output.shape() == expect.shape) | |||
| assert output.shape() == expect.shape | |||
| @@ -68,8 +68,8 @@ class GradData(nn.Cell): | |||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||
| self.network = network | |||
| def construct(self, input, output_grad): | |||
| return self.grad(self.network)(input, output_grad) | |||
| def construct(self, inputs, output_grad): | |||
| return self.grad(self.network)(inputs, output_grad) | |||
| class GradWeight(nn.Cell): | |||
| @@ -172,8 +172,8 @@ class Grad(nn.Cell): | |||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||
| self.network = network | |||
| def construct(self, input, bias, dy): | |||
| return self.grad(self.network)(input, bias, dy) | |||
| def construct(self, inputs, bias, dy): | |||
| return self.grad(self.network)(inputs, bias, dy) | |||
| @pytest.mark.level0 | |||
| @@ -50,16 +50,16 @@ def test_equal(): | |||
| equal = NetEqual() | |||
| output0 = equal(x0, y0) | |||
| assert np.all(output0.asnumpy() == expect0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = equal(x1, y1) | |||
| assert np.all(output1.asnumpy() == expect1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| equal = NetEqual() | |||
| output0 = equal(x0, y0) | |||
| assert np.all(output0.asnumpy() == expect0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = equal(x1, y1) | |||
| assert np.all(output1.asnumpy() == expect1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| @@ -49,19 +49,19 @@ def test_exp(): | |||
| output0 = exp(x0) | |||
| diff0 = output0.asnumpy() - expect0 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = exp(x1) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| exp = NetExp() | |||
| output0 = exp(x0) | |||
| diff0 = output0.asnumpy() - expect0 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = exp(x1) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| @@ -19,7 +19,6 @@ import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| @@ -38,11 +37,6 @@ class NetFlattenGrad(nn.Cell): | |||
| @pytest.mark.env_onecard | |||
| def test_flatten_grad(): | |||
| x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)) | |||
| """ | |||
| expect output: | |||
| [ [-0.1 0.3 3.6] | |||
| [ 0.4 0.5 -3.2] ] | |||
| """ | |||
| expect = np.array([[-0.1, 0.3, 3.6], | |||
| [0.4, 0.5, -3.2]]).astype(np.float32) | |||
| @@ -37,11 +37,6 @@ class NetFlatten(nn.Cell): | |||
| def test_flatten(): | |||
| x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)) | |||
| expect = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32) | |||
| """ | |||
| expect output: | |||
| [[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]] | |||
| """ | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| flatten = NetFlatten() | |||
| output = flatten(x) | |||
| @@ -68,7 +68,7 @@ x3 = np.array([[1, 2], [3, 4], [5.0, 88.0]]).astype(np.float32) | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_status(): | |||
| ms_status = Net(); | |||
| ms_status = Net() | |||
| output1 = ms_status(Tensor(x1)) | |||
| output2 = ms_status(Tensor(x2)) | |||
| output3 = ms_status(Tensor(x3)) | |||
| @@ -84,7 +84,7 @@ def test_status(): | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_nan(): | |||
| ms_isnan = Netnan(); | |||
| ms_isnan = Netnan() | |||
| output1 = ms_isnan(Tensor(x1)) | |||
| output2 = ms_isnan(Tensor(x2)) | |||
| output3 = ms_isnan(Tensor(x3)) | |||
| @@ -100,7 +100,7 @@ def test_nan(): | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_inf(): | |||
| ms_isinf = Netinf(); | |||
| ms_isinf = Netinf() | |||
| output1 = ms_isinf(Tensor(x1)) | |||
| output2 = ms_isinf(Tensor(x2)) | |||
| output3 = ms_isinf(Tensor(x3)) | |||
| @@ -116,7 +116,7 @@ def test_inf(): | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_finite(): | |||
| ms_isfinite = Netfinite(); | |||
| ms_isfinite = Netfinite() | |||
| output1 = ms_isfinite(Tensor(x1)) | |||
| output2 = ms_isfinite(Tensor(x2)) | |||
| output3 = ms_isfinite(Tensor(x3)) | |||
| @@ -913,16 +913,16 @@ class GatherNet2(nn.Cell): | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gather2(): | |||
| x = Tensor(np.array([[4., 5., 4., 1., 5., ], | |||
| [4., 9., 5., 6., 4., ], | |||
| [9., 8., 4., 3., 6., ], | |||
| [0., 4., 2., 2., 8., ], | |||
| [1., 8., 6., 2., 8., ], | |||
| [8., 1., 9., 7., 3., ], | |||
| [7., 9., 2., 5., 7., ], | |||
| [9., 8., 6., 8., 5., ], | |||
| [3., 7., 2., 7., 4., ], | |||
| [4., 2., 8., 2., 9., ]] | |||
| x = Tensor(np.array([[4., 5., 4., 1., 5.,], | |||
| [4., 9., 5., 6., 4.,], | |||
| [9., 8., 4., 3., 6.,], | |||
| [0., 4., 2., 2., 8.,], | |||
| [1., 8., 6., 2., 8.,], | |||
| [8., 1., 9., 7., 3.,], | |||
| [7., 9., 2., 5., 7.,], | |||
| [9., 8., 6., 8., 5.,], | |||
| [3., 7., 2., 7., 4.,], | |||
| [4., 2., 8., 2., 9.,]] | |||
| ).astype(np.float32)) | |||
| indices = Tensor(np.array([[4000, 1, 300000]]).astype(np.int32)) | |||
| @@ -19,8 +19,6 @@ import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import composite as C | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| @@ -50,10 +50,10 @@ def test_log(): | |||
| output1 = log(x1) | |||
| diff0 = output0.asnumpy() - expect0 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| diff1 = output1.asnumpy() - expect1 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| log = NetLog() | |||
| @@ -61,7 +61,7 @@ def test_log(): | |||
| output1 = log(x1) | |||
| diff0 = output0.asnumpy() - expect0 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| diff1 = output1.asnumpy() - expect1 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| @@ -27,8 +27,8 @@ class NetAnd(Cell): | |||
| super(NetAnd, self).__init__() | |||
| self.logicaland = P.LogicalAnd() | |||
| def construct(self, x, y): | |||
| return self.logicaland(x, y) | |||
| def construct(self, input_x, input_y): | |||
| return self.logicaland(input_x, input_y) | |||
| class NetOr(Cell): | |||
| @@ -36,8 +36,8 @@ class NetOr(Cell): | |||
| super(NetOr, self).__init__() | |||
| self.logicalor = P.LogicalOr() | |||
| def construct(self, x, y): | |||
| return self.logicalor(x, y) | |||
| def construct(self, input_x, input_y): | |||
| return self.logicalor(input_x, input_y) | |||
| class NetNot(Cell): | |||
| @@ -45,8 +45,8 @@ class NetNot(Cell): | |||
| super(NetNot, self).__init__() | |||
| self.logicalnot = P.LogicalNot() | |||
| def construct(self, x): | |||
| return self.logicalnot(x) | |||
| def construct(self, input_x): | |||
| return self.logicalnot(input_x) | |||
| x = np.array([True, False, False]).astype(np.bool) | |||
| @@ -35,8 +35,8 @@ def test_logsoftmax(): | |||
| [-3.452001, -1.2546989, -1.4618242, -0.79552734]]).astype(np.float32) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| LogSoftmax = P.LogSoftmax() | |||
| output = LogSoftmax(Tensor(x)) | |||
| logSoftmax = P.LogSoftmax() | |||
| output = logSoftmax(Tensor(x)) | |||
| assert np.allclose(output.asnumpy(), expect) | |||
| @@ -134,7 +134,7 @@ def test_logsoftmaxgrad1(): | |||
| [-0.01768187, 0.26872346, -0.5037259, -0.3376058, -0.3291146, 1.4752979, -0.25972134, 0.8869053, | |||
| 0.25325722, -0.13946185], | |||
| [-0.5247209, 0.70192003, -1.0808672, 1.4858199, -1.1273282, 0.20728993, 0.38918605, 0.08162117, | |||
| 0.10445589, 0.3220427]], ).astype(np.float32) | |||
| 0.10445589, 0.3220427]],).astype(np.float32) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| net = LogSoftmax(0) | |||
| @@ -23,7 +23,6 @@ from mindspore.common.initializer import initializer | |||
| from mindspore.common.parameter import ParameterTuple, Parameter | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore.ops import composite as C | |||
| from mindspore.ops import functional as F | |||
| from mindspore.ops import operations as P | |||
| context.set_context(device_target='GPU') | |||
| @@ -81,7 +80,7 @@ class LstmNet(nn.Cell): | |||
| -2.9055e-01, -2.8129e-01, 6.0219e-01, 4.9193e-01, 3.3115e-01], | |||
| [-5.6894e-01, -5.0359e-01, 4.7491e-01, 5.8110e-01, -5.4921e-01, | |||
| -6.1343e-01, -5.8236e-02, -3.7682e-01, 4.8338e-01, -2.1551e-01]]).astype(np.float32).reshape( | |||
| [1, -1]) | |||
| [1, -1]) | |||
| whh = np.array([[-0.4820, -0.2350], | |||
| [-0.1195, 0.0519], | |||
| @@ -205,7 +204,7 @@ class BiLstmNet(nn.Cell): | |||
| [0.0299, -0.6071, -0.4683, -0.3363, -0.0044, -0.0007, 0.2700, 0.0202, -0.2880, -0.6869], | |||
| [0.3025, -0.2461, -0.5128, 0.6327, -0.1438, -0.5100, 0.1924, 0.2023, 0.3129, 0.2271], | |||
| [0.3777, 0.0546, 0.4790, -0.1895, 0.3588, 0.4490, 0.6850, 0.6240, -0.2739, -0.4474]]).astype( | |||
| np.float32).reshape([1, -1]) | |||
| np.float32).reshape([1, -1]) | |||
| whh = np.array([[0.6346, -0.6366], | |||
| [-0.0248, -0.6156], | |||
| @@ -394,7 +393,7 @@ class MultiLayerBiLstmNet(nn.Cell): | |||
| 5.5428e-01, 1.0429e-01, 5.1322e-01, 1.9406e-01], | |||
| [3.9698e-01, -5.2101e-01, 5.1372e-01, -3.9866e-01, 1.0115e-01, -4.1290e-02, | |||
| -3.0980e-01, 2.1607e-01, 4.8420e-01, -1.9267e-01]]).astype(np.float32).reshape( | |||
| [1, -1]) | |||
| [1, -1]) | |||
| whh_reverse_l0 = np.array([[-0.3231, -0.3960], | |||
| [-0.1625, -0.3032], | |||
| @@ -460,7 +459,7 @@ class MultiLayerBiLstmNet(nn.Cell): | |||
| weight | |||
| layer0 | |||
| forward | |||
| wih | |||
| wih | |||
| whh | |||
| reverse | |||
| wih | |||
| @@ -662,7 +661,7 @@ class Net(nn.Cell): | |||
| [-0.4520, 0.4201, -0.2374, -0.1556, -0.4175, -0.6834, 0.3096, -0.1581, 0.0127, 0.6872], | |||
| [0.1788, -0.5442, -0.3675, -0.2887, -0.3004, 0.5813, 0.1618, 0.6875, -0.4678, 0.0071], | |||
| [-0.6453, -0.2528, 0.5675, -0.5154, -0.4129, -0.0214, 0.5539, 0.0343, 0.1712, 0.5644]]).astype( | |||
| np.float32).reshape([1, -1]) | |||
| np.float32).reshape([1, -1]) | |||
| whh_reverse_l0 = np.array([[-0.6657, 0.6330], | |||
| [-0.2290, 0.6556], | |||
| @@ -728,7 +727,7 @@ class Net(nn.Cell): | |||
| weight | |||
| layer0 | |||
| forward | |||
| wih | |||
| wih | |||
| whh | |||
| reverse | |||
| wih | |||
| @@ -927,7 +926,7 @@ class LstmNetWithDropout(nn.Cell): | |||
| [0.5142, 0.0790, -0.1123, -0.2351, 0.3982, -0.6351, 0.5906, 0.3917, -0.0850, -0.5397], | |||
| [-0.4795, -0.6576, 0.5693, 0.0047, -0.6626, 0.1013, -0.4015, -0.4040, -0.2817, 0.4430], | |||
| [0.0251, -0.3035, -0.6026, 0.2693, -0.2749, 0.1501, -0.5778, 0.5570, -0.7065, -0.6196]]).astype( | |||
| np.float32).reshape([1, -1]) | |||
| np.float32).reshape([1, -1]) | |||
| whh = np.array([[-0.4344, -0.2529], | |||
| [0.0377, 0.7046], | |||
| @@ -53,15 +53,15 @@ def test_maximum(): | |||
| error = np.ones(shape=[1, 3]) * 1.0e-5 | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| max = Net() | |||
| output = max(x, y) | |||
| max_op = Net() | |||
| output = max_op(x, y) | |||
| diff = output.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| assert np.all(-diff < error) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| max = Net() | |||
| output = max(x, y) | |||
| max_op_2 = Net() | |||
| output = max_op_2(x, y) | |||
| diff = output.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| assert np.all(-diff < error) | |||
| @@ -19,7 +19,6 @@ import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| @@ -16,7 +16,6 @@ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.context as context | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore.nn import Cell | |||
| @@ -57,17 +57,12 @@ def test_momentum(): | |||
| train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer | |||
| train_network.set_train() | |||
| losses = [] | |||
| for i in range(epoch): | |||
| for _ in range(epoch): | |||
| data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01) | |||
| label = Tensor(np.array([0]).astype(np.int32)) | |||
| loss = train_network(data, label) | |||
| losses.append(loss) | |||
| """ | |||
| expect output: | |||
| [[0.04132498 0.00874167 0.00874167 0.00874167 0.00874167 | |||
| 0.00874167 0.00874167 0.00874167 0.00874167 0.00874167]] | |||
| """ | |||
| error = np.ones(shape=[1, 10]) * 1.0e-6 | |||
| _ = np.ones(shape=[1, 10]) * 1.0e-6 | |||
| return losses | |||
| @@ -64,35 +64,35 @@ def test_mul(): | |||
| diff0 = output0.asnumpy() - expect0 | |||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = mul(x1, y1) | |||
| expect1 = np.multiply(x1_np, y1_np) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| output2 = mul(x2, y2) | |||
| expect2 = np.multiply(x2_np, y2_np) | |||
| diff2 = output2.asnumpy() - expect2 | |||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | |||
| assert np.all(diff2 < error2) | |||
| assert (output2.shape() == expect2.shape) | |||
| assert output2.shape() == expect2.shape | |||
| output3 = mul(x3, y3) | |||
| expect3 = np.multiply(x3_np, y3_np) | |||
| diff3 = output3.asnumpy() - expect3 | |||
| error3 = np.ones(shape=expect3.shape) * 1.0e-5 | |||
| assert np.all(diff3 < error3) | |||
| assert (output3.shape() == expect3.shape) | |||
| assert output3.shape() == expect3.shape | |||
| output4 = mul(x4, y4) | |||
| expect4 = np.multiply(x4_np, y4_np) | |||
| diff4 = output4.asnumpy() - expect4 | |||
| error4 = np.ones(shape=expect4.shape) * 1.0e-5 | |||
| assert np.all(diff4 < error4) | |||
| assert (output4.shape() == expect4.shape) | |||
| assert output4.shape() == expect4.shape | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| mul = NetMul() | |||
| @@ -101,32 +101,32 @@ def test_mul(): | |||
| diff0 = output0.asnumpy() - expect0 | |||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = mul(x1, y1) | |||
| expect1 = np.multiply(x1_np, y1_np) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| output2 = mul(x2, y2) | |||
| expect2 = np.multiply(x2_np, y2_np) | |||
| diff2 = output2.asnumpy() - expect2 | |||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | |||
| assert np.all(diff2 < error2) | |||
| assert (output2.shape() == expect2.shape) | |||
| assert output2.shape() == expect2.shape | |||
| output3 = mul(x3, y3) | |||
| expect3 = np.multiply(x3_np, y3_np) | |||
| diff3 = output3.asnumpy() - expect3 | |||
| error3 = np.ones(shape=expect3.shape) * 1.0e-5 | |||
| assert np.all(diff3 < error3) | |||
| assert (output3.shape() == expect3.shape) | |||
| assert output3.shape() == expect3.shape | |||
| output4 = mul(x4, y4) | |||
| expect4 = np.multiply(x4_np, y4_np) | |||
| diff4 = output4.asnumpy() - expect4 | |||
| error4 = np.ones(shape=expect4.shape) * 1.0e-5 | |||
| assert np.all(diff4 < error4) | |||
| assert (output4.shape() == expect4.shape) | |||
| assert output4.shape() == expect4.shape | |||
| @@ -49,19 +49,19 @@ def test_neg(): | |||
| output0 = neg(x0) | |||
| diff0 = output0.asnumpy() - expect0 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = neg(x1) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| neg = NetNeg() | |||
| output0 = neg(x0) | |||
| diff0 = output0.asnumpy() - expect0 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = neg(x1) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| @@ -20,7 +20,6 @@ import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.api import ms_function | |||
| from mindspore.ops import operations as P | |||
| context.set_context(device_target='GPU') | |||
| @@ -19,9 +19,6 @@ import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.api import ms_function | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.ops import operations as P | |||
| @@ -67,35 +64,35 @@ def test_real_div(): | |||
| diff0 = output0.asnumpy() - expect0 | |||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = real_div(x1, y1) | |||
| expect1 = np.divide(x1_np, y1_np) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| output2 = real_div(x2, y2) | |||
| expect2 = np.divide(x2_np, y2_np) | |||
| diff2 = output2.asnumpy() - expect2 | |||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | |||
| assert np.all(diff2 < error2) | |||
| assert (output2.shape() == expect2.shape) | |||
| assert output2.shape() == expect2.shape | |||
| output3 = real_div(x3, y3) | |||
| expect3 = np.divide(x3_np, y3_np) | |||
| diff3 = output3.asnumpy() - expect3 | |||
| error3 = np.ones(shape=expect3.shape) * 1.0e-5 | |||
| assert np.all(diff3 < error3) | |||
| assert (output3.shape() == expect3.shape) | |||
| assert output3.shape() == expect3.shape | |||
| output4 = real_div(x4, y4) | |||
| expect4 = np.divide(x4_np, y4_np) | |||
| diff4 = output4.asnumpy() - expect4 | |||
| error4 = np.ones(shape=expect4.shape) * 1.0e-5 | |||
| assert np.all(diff4 < error4) | |||
| assert (output4.shape() == expect4.shape) | |||
| assert output4.shape() == expect4.shape | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') | |||
| real_div = NetRealDiv() | |||
| @@ -104,32 +101,32 @@ def test_real_div(): | |||
| diff0 = output0.asnumpy() - expect0 | |||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = real_div(x1, y1) | |||
| expect1 = np.divide(x1_np, y1_np) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| output2 = real_div(x2, y2) | |||
| expect2 = np.divide(x2_np, y2_np) | |||
| diff2 = output2.asnumpy() - expect2 | |||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | |||
| assert np.all(diff2 < error2) | |||
| assert (output2.shape() == expect2.shape) | |||
| assert output2.shape() == expect2.shape | |||
| output3 = real_div(x3, y3) | |||
| expect3 = np.divide(x3_np, y3_np) | |||
| diff3 = output3.asnumpy() - expect3 | |||
| error3 = np.ones(shape=expect3.shape) * 1.0e-5 | |||
| assert np.all(diff3 < error3) | |||
| assert (output3.shape() == expect3.shape) | |||
| assert output3.shape() == expect3.shape | |||
| output4 = real_div(x4, y4) | |||
| expect4 = np.divide(x4_np, y4_np) | |||
| diff4 = output4.asnumpy() - expect4 | |||
| error4 = np.ones(shape=expect4.shape) * 1.0e-5 | |||
| assert np.all(diff4 < error4) | |||
| assert (output4.shape() == expect4.shape) | |||
| assert output4.shape() == expect4.shape | |||
| @@ -49,19 +49,19 @@ def test_Reciprocal(): | |||
| output0 = reciprocal(x0) | |||
| diff0 = output0.asnumpy() - expect0 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = reciprocal(x1) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| reciprocal = NetReciprocal() | |||
| output0 = reciprocal(x0) | |||
| diff0 = output0.asnumpy() - expect0 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = reciprocal(x1) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| @@ -128,43 +128,43 @@ def test_ReduceMax(): | |||
| diff0 = abs(output[0].asnumpy() - expect0) | |||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | |||
| assert np.all(diff0 < error0) | |||
| assert (output[0].shape() == expect0.shape) | |||
| assert output[0].shape() == expect0.shape | |||
| expect1 = np.max(x1, axis=axis1, keepdims=keep_dims1) | |||
| diff1 = abs(output[1].asnumpy() - expect1) | |||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||
| assert np.all(diff1 < error1) | |||
| assert (output[1].shape() == expect1.shape) | |||
| assert output[1].shape() == expect1.shape | |||
| expect2 = np.max(x2, axis=axis2, keepdims=keep_dims2) | |||
| diff2 = abs(output[2].asnumpy() - expect2) | |||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | |||
| assert np.all(diff2 < error2) | |||
| assert (output[2].shape() == expect2.shape) | |||
| assert output[2].shape() == expect2.shape | |||
| expect3 = np.max(x3, axis=axis3, keepdims=keep_dims3) | |||
| diff3 = abs(output[3].asnumpy() - expect3) | |||
| error3 = np.ones(shape=expect3.shape) * 1.0e-5 | |||
| assert np.all(diff3 < error3) | |||
| assert (output[3].shape() == expect3.shape) | |||
| assert output[3].shape() == expect3.shape | |||
| expect4 = np.max(x4, axis=np_axis4, keepdims=keep_dims4) | |||
| diff4 = abs(output[4].asnumpy() - expect4) | |||
| error4 = np.ones(shape=expect4.shape) * 1.0e-5 | |||
| assert np.all(diff4 < error4) | |||
| assert (output[4].shape() == expect4.shape) | |||
| assert output[4].shape() == expect4.shape | |||
| expect5 = np.max(x5, axis=np_axis5, keepdims=keep_dims5) | |||
| diff5 = abs(output[5].asnumpy() - expect5) | |||
| error5 = np.ones(shape=expect5.shape) * 1.0e-5 | |||
| assert np.all(diff5 < error5) | |||
| assert (output[5].shape() == expect5.shape) | |||
| assert output[5].shape() == expect5.shape | |||
| expect6 = np.max(x6, axis=axis6, keepdims=keep_dims6) | |||
| diff6 = abs(output[6].asnumpy() - expect6) | |||
| error6 = np.ones(shape=expect6.shape) * 1.0e-5 | |||
| assert np.all(diff6 < error6) | |||
| assert (output[6].shape() == expect6.shape) | |||
| assert output[6].shape() == expect6.shape | |||
| expect7 = np.max(x7, axis=axis7, keepdims=keep_dims7) | |||
| diff7 = abs(output[7].asnumpy() - expect7) | |||
| @@ -180,88 +180,88 @@ def test_ReduceMean(): | |||
| diff0 = abs(output[0].asnumpy() - expect0) | |||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | |||
| assert np.all(diff0 < error0) | |||
| assert (output[0].shape() == expect0.shape) | |||
| assert output[0].shape() == expect0.shape | |||
| expect1 = np.mean(x1, axis=axis1, keepdims=keep_dims1) | |||
| diff1 = abs(output[1].asnumpy() - expect1) | |||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||
| assert np.all(diff1 < error1) | |||
| assert (output[1].shape() == expect1.shape) | |||
| assert output[1].shape() == expect1.shape | |||
| expect2 = np.mean(x2, axis=axis2, keepdims=keep_dims2) | |||
| diff2 = abs(output[2].asnumpy() - expect2) | |||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | |||
| assert np.all(diff2 < error2) | |||
| assert (output[2].shape() == expect2.shape) | |||
| assert output[2].shape() == expect2.shape | |||
| expect3 = np.mean(x3, axis=axis3, keepdims=keep_dims3) | |||
| diff3 = abs(output[3].asnumpy() - expect3) | |||
| error3 = np.ones(shape=expect3.shape) * 1.0e-5 | |||
| assert np.all(diff3 < error3) | |||
| assert (output[3].shape() == expect3.shape) | |||
| assert output[3].shape() == expect3.shape | |||
| expect4 = np.mean(x4, axis=axis4, keepdims=keep_dims4) | |||
| diff4 = abs(output[4].asnumpy() - expect4) | |||
| error4 = np.ones(shape=expect4.shape) * 1.0e-5 | |||
| assert np.all(diff4 < error4) | |||
| assert (output[4].shape() == expect4.shape) | |||
| assert output[4].shape() == expect4.shape | |||
| expect5 = np.mean(x5, axis=axis5, keepdims=keep_dims5) | |||
| diff5 = abs(output[5].asnumpy() - expect5) | |||
| error5 = np.ones(shape=expect5.shape) * 1.0e-5 | |||
| assert np.all(diff5 < error5) | |||
| assert (output[5].shape() == expect5.shape) | |||
| assert output[5].shape() == expect5.shape | |||
| expect6 = np.mean(x6, axis=axis6, keepdims=keep_dims6) | |||
| diff6 = abs(output[6].asnumpy() - expect6) | |||
| error6 = np.ones(shape=expect6.shape) * 1.0e-5 | |||
| assert np.all(diff6 < error6) | |||
| assert (output[6].shape() == expect6.shape) | |||
| assert output[6].shape() == expect6.shape | |||
| expect7 = np.mean(x7, axis=axis7, keepdims=keep_dims7) | |||
| diff7 = abs(output[7].asnumpy() - expect7) | |||
| error7 = np.ones(shape=expect7.shape) * 1.0e-5 | |||
| assert np.all(diff7 < error7) | |||
| assert (output[7].shape() == expect7.shape) | |||
| assert output[7].shape() == expect7.shape | |||
| expect8 = np.mean(x8, axis=axis8, keepdims=keep_dims8) | |||
| diff8 = abs(output[8].asnumpy() - expect8) | |||
| error8 = np.ones(shape=expect8.shape) * 1.0e-5 | |||
| assert np.all(diff8 < error8) | |||
| assert (output[8].shape() == expect8.shape) | |||
| assert output[8].shape() == expect8.shape | |||
| expect9 = np.mean(x9, axis=axis9, keepdims=keep_dims9) | |||
| diff9 = abs(output[9].asnumpy() - expect9) | |||
| error9 = np.ones(shape=expect9.shape) * 1.0e-5 | |||
| assert np.all(diff9 < error9) | |||
| assert (output[9].shape() == expect9.shape) | |||
| assert output[9].shape() == expect9.shape | |||
| expect10 = np.mean(x10, axis=axis10, keepdims=keep_dims10) | |||
| diff10 = abs(output[10].asnumpy() - expect10) | |||
| error10 = np.ones(shape=expect10.shape) * 1.0e-5 | |||
| assert np.all(diff10 < error10) | |||
| assert (output[10].shape() == expect10.shape) | |||
| assert output[10].shape() == expect10.shape | |||
| expect11 = np.mean(x11, axis=axis11, keepdims=keep_dims11) | |||
| diff11 = abs(output[11].asnumpy() - expect11) | |||
| error11 = np.ones(shape=expect11.shape) * 1.0e-5 | |||
| assert np.all(diff11 < error11) | |||
| assert (output[11].shape() == expect11.shape) | |||
| assert output[11].shape() == expect11.shape | |||
| expect12 = np.mean(x12, axis=axis12, keepdims=keep_dims12) | |||
| diff12 = abs(output[12].asnumpy() - expect12) | |||
| error12 = np.ones(shape=expect12.shape) * 1.0e-5 | |||
| assert np.all(diff12 < error12) | |||
| assert (output[12].shape() == expect12.shape) | |||
| assert output[12].shape() == expect12.shape | |||
| expect13 = np.mean(x13, axis=axis13, keepdims=keep_dims13) | |||
| diff13 = abs(output[13].asnumpy() - expect13) | |||
| error13 = np.ones(shape=expect13.shape) * 1.0e-5 | |||
| assert np.all(diff13 < error13) | |||
| assert (output[13].shape() == expect13.shape) | |||
| assert output[13].shape() == expect13.shape | |||
| expect14 = np.mean(x14, axis=np_axis14, keepdims=keep_dims14) | |||
| diff14 = abs(output[14].asnumpy() - expect14) | |||
| error14 = np.ones(shape=expect14.shape) * 1.0e-5 | |||
| assert np.all(diff14 < error14) | |||
| assert (output[14].shape() == expect14.shape) | |||
| assert output[14].shape() == expect14.shape | |||
| @@ -19,7 +19,6 @@ import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| @@ -42,9 +41,9 @@ def test_relu6_grad(): | |||
| dy = Tensor(np.array([[[[1, 1, 1], | |||
| [1, 1, 1], | |||
| [1, 1, 1]]]]).astype(np.float32)) | |||
| expect = np.array([[[[0, 1, 0, ], | |||
| [1, 0, 0, ], | |||
| [0, 1, 0, ]]]]).astype(np.float32) | |||
| expect = np.array([[[[0, 1, 0,], | |||
| [1, 0, 0,], | |||
| [0, 1, 0,]]]]).astype(np.float32) | |||
| error = np.ones(shape=[3, 3]) * 1.0e-6 | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| @@ -38,8 +38,8 @@ def test_relu6(): | |||
| x = Tensor(np.array([[[[-1, 1, 10], | |||
| [5.9, 6.1, 6], | |||
| [10, 1, -1]]]]).astype(np.float32)) | |||
| expect = np.array([[[[0, 1, 6, ], | |||
| [5.9, 6, 6, ], | |||
| expect = np.array([[[[0, 1, 6,], | |||
| [5.9, 6, 6,], | |||
| [6, 1, 0.]]]]).astype(np.float32) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| @@ -38,8 +38,8 @@ def test_relu(): | |||
| x = Tensor(np.array([[[[-1, 1, 10], | |||
| [1, -1, 1], | |||
| [10, 1, -1]]]]).astype(np.float32)) | |||
| expect = np.array([[[[0, 1, 10, ], | |||
| [1, 0, 1, ], | |||
| expect = np.array([[[[0, 1, 10,], | |||
| [1, 0, 1,], | |||
| [10, 1, 0.]]]]).astype(np.float32) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| @@ -27,8 +27,8 @@ class Net(nn.Cell): | |||
| super(Net, self).__init__() | |||
| self.select = P.Select() | |||
| def construct(self, cond, x, y): | |||
| return self.select(cond, x, y) | |||
| def construct(self, cond, input_x, input_y): | |||
| return self.select(cond, input_x, input_y) | |||
| cond = np.array([[True, False], [True, False]]).astype(np.bool) | |||
| @@ -41,8 +41,8 @@ def test_slice(): | |||
| [[4., -4., 4.]]] | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| slice = Slice() | |||
| output = slice(x) | |||
| slice_op = Slice() | |||
| output = slice_op(x) | |||
| assert (output.asnumpy() == expect).all() | |||
| @@ -20,7 +20,6 @@ import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.api import ms_function | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| context.set_context(device_target='GPU') | |||
| @@ -19,10 +19,6 @@ import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.api import ms_function | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.common.parameter import Parameter | |||
| class NetSoftmaxCrossEntropyWithLogits(nn.Cell): | |||
| def __init__(self): | |||
| @@ -116,7 +116,7 @@ def test_softmax_4d(): | |||
| [-1.5992336e-01, -5.9647644e-01, 1.2957820e+00, -1.0650631e-01, 7.0879894e-01], | |||
| [4.1372257e-01, 3.6408889e-01, -6.3091749e-01, 1.0573713e+00, 1.0981073e+00], | |||
| [-1.9162457e-01, 3.6392561e-05, -1.8338780e-01, 1.7549801e+00, -9.3534666e-01]]]]).astype( | |||
| np.float32) | |||
| np.float32) | |||
| dy = np.array([[[[2.98213929e-01, 3.10518718e+00, -1.64306939e-01, -7.33681679e-01, 5.23136854e-02], | |||
| [-3.47142726e-01, -1.52662742e+00, 5.26977003e-01, 5.29672280e-02, -4.34386432e-01], | |||
| @@ -142,7 +142,7 @@ def test_softmax_4d(): | |||
| [4.14457440e-01, -8.74118507e-01, -4.21902031e-01, 7.87168801e-01, -1.48280108e+00], | |||
| [1.42688036e+00, -2.02695489e+00, 9.26816165e-01, 9.37691629e-01, 7.85577714e-01], | |||
| [-6.59893751e-01, 1.14681525e-02, -5.79456389e-01, -1.65206456e+00, 4.37116653e-01]]]]).astype( | |||
| np.float32) | |||
| np.float32) | |||
| expect_x = np.array([[[[0.21919312, 0.3903627, 0.12594244, 0.07031325, 0.19418849], | |||
| [0.19778392, 0.36304963, 0.16719443, 0.1646197, 0.10735231], | |||
| @@ -19,8 +19,6 @@ import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.api import ms_function | |||
| class NetSparseSoftmaxCrossEntropyWithLogits(nn.Cell): | |||
| def __init__(self): | |||
| @@ -17,7 +17,6 @@ import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| @@ -76,19 +76,19 @@ def test_Sub(): | |||
| output4 = sub(x4, y4) | |||
| diff0 = output0.asnumpy() - expect0 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| diff1 = output1.asnumpy() - expect1 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| diff2 = output2.asnumpy() - expect2 | |||
| assert np.all(diff2 < error2) | |||
| assert (output2.shape() == expect2.shape) | |||
| assert output2.shape() == expect2.shape | |||
| diff3 = output3.asnumpy() - expect3 | |||
| assert np.all(diff3 < error3) | |||
| assert (output3.shape() == expect3.shape) | |||
| assert output3.shape() == expect3.shape | |||
| diff4 = output4.asnumpy() - expect4 | |||
| assert np.all(diff4 < error4) | |||
| assert (output4.shape() == expect4.shape) | |||
| assert output4.shape() == expect4.shape | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| sub = Net() | |||
| @@ -99,16 +99,16 @@ def test_Sub(): | |||
| output4 = sub(x4, y4) | |||
| diff0 = output0.asnumpy() - expect0 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| diff1 = output1.asnumpy() - expect1 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| diff2 = output2.asnumpy() - expect2 | |||
| assert np.all(diff2 < error2) | |||
| assert (output2.shape() == expect2.shape) | |||
| assert output2.shape() == expect2.shape | |||
| diff3 = output3.asnumpy() - expect3 | |||
| assert np.all(diff3 < error3) | |||
| assert (output3.shape() == expect3.shape) | |||
| assert output3.shape() == expect3.shape | |||
| diff4 = output4.asnumpy() - expect4 | |||
| assert np.all(diff4 < error4) | |||
| assert (output4.shape() == expect4.shape) | |||
| assert output4.shape() == expect4.shape | |||
| @@ -65,16 +65,16 @@ def test_tile(): | |||
| diff0 = output[0].asnumpy() - expect0 | |||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | |||
| assert np.all(diff0 < error0) | |||
| assert (output[0].shape() == expect0.shape) | |||
| assert output[0].shape() == expect0.shape | |||
| expect1 = np.tile(input_x1, mul1) | |||
| diff1 = output[1].asnumpy() - expect1 | |||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||
| assert np.all(diff1 < error1) | |||
| assert (output[1].shape() == expect1.shape) | |||
| assert output[1].shape() == expect1.shape | |||
| expect2 = np.tile(input_x2, mul2) | |||
| diff2 = output[2].asnumpy() - expect2 | |||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | |||
| assert np.all(diff2 < error2) | |||
| assert (output[2].shape() == expect2.shape) | |||
| assert output[2].shape() == expect2.shape | |||
| @@ -20,9 +20,6 @@ import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.common.api import ms_function | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.ops import operations as P | |||
| context.set_context(device_target='GPU') | |||
| @@ -19,9 +19,6 @@ import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.api import ms_function | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.ops import operations as P | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| @@ -53,14 +50,14 @@ def test_ZerosLike(): | |||
| diff0 = output0.asnumpy() - expect0 | |||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = zeros_like(x1) | |||
| expect1 = np.zeros_like(x1_np) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| zeros_like = NetZerosLike() | |||
| @@ -69,11 +66,11 @@ def test_ZerosLike(): | |||
| diff0 = output0.asnumpy() - expect0 | |||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | |||
| assert np.all(diff0 < error0) | |||
| assert (output0.shape() == expect0.shape) | |||
| assert output0.shape() == expect0.shape | |||
| output1 = zeros_like(x1) | |||
| expect1 = np.zeros_like(x1_np) | |||
| diff1 = output1.asnumpy() - expect1 | |||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||
| assert np.all(diff1 < error1) | |||
| assert (output1.shape() == expect1.shape) | |||
| assert output1.shape() == expect1.shape | |||