Browse Source

!1426 Fix the issues checked by pylint

Merge pull request !1426 from chengang/fix_pylint
tags/v0.5.0-beta
mindspore-ci-bot Gitee 5 years ago
parent
commit
e5c7ecfd46
51 changed files with 163 additions and 242 deletions
  1. +4
    -4
      tests/st/ops/gpu/test_argmax_op.py
  2. +4
    -4
      tests/st/ops/gpu/test_assign_op.py
  3. +5
    -18
      tests/st/ops/gpu/test_batch_matmul.py
  4. +7
    -8
      tests/st/ops/gpu/test_batchnorm_fold2_op.py
  5. +2
    -2
      tests/st/ops/gpu/test_batchnorm_fold_grad_op.py
  6. +2
    -2
      tests/st/ops/gpu/test_batchnorm_fold_op.py
  7. +0
    -3
      tests/st/ops/gpu/test_batchnorm_op.py
  8. +0
    -2
      tests/st/ops/gpu/test_broadcast_op.py
  9. +4
    -4
      tests/st/ops/gpu/test_cast_op.py
  10. +0
    -7
      tests/st/ops/gpu/test_conv2d_backprop_filter_op.py
  11. +0
    -2
      tests/st/ops/gpu/test_conv2d_backprop_input_op.py
  12. +0
    -10
      tests/st/ops/gpu/test_conv2d_op.py
  13. +2
    -3
      tests/st/ops/gpu/test_correction_mul_grad_op.py
  14. +1
    -1
      tests/st/ops/gpu/test_correction_mul_op.py
  15. +4
    -4
      tests/st/ops/gpu/test_dense_op.py
  16. +4
    -4
      tests/st/ops/gpu/test_equal_op.py
  17. +4
    -4
      tests/st/ops/gpu/test_exp_op.py
  18. +0
    -6
      tests/st/ops/gpu/test_flatten_grad_op.py
  19. +0
    -5
      tests/st/ops/gpu/test_flatten_op.py
  20. +4
    -4
      tests/st/ops/gpu/test_float_status_op.py
  21. +10
    -10
      tests/st/ops/gpu/test_gather_op.py
  22. +0
    -2
      tests/st/ops/gpu/test_layer_norm_grad_op.py
  23. +4
    -4
      tests/st/ops/gpu/test_log_op.py
  24. +6
    -6
      tests/st/ops/gpu/test_logical_op.py
  25. +3
    -3
      tests/st/ops/gpu/test_logsoftmax_op.py
  26. +7
    -8
      tests/st/ops/gpu/test_lstm_op.py
  27. +4
    -4
      tests/st/ops/gpu/test_maximum_op.py
  28. +0
    -1
      tests/st/ops/gpu/test_maxpool_grad_gpu_op.py
  29. +0
    -1
      tests/st/ops/gpu/test_minimum_op.py
  30. +2
    -7
      tests/st/ops/gpu/test_momentum_op.py
  31. +10
    -10
      tests/st/ops/gpu/test_mul_op.py
  32. +4
    -4
      tests/st/ops/gpu/test_neg_op.py
  33. +0
    -1
      tests/st/ops/gpu/test_one_hot_op.py
  34. +10
    -13
      tests/st/ops/gpu/test_realdiv_op.py
  35. +4
    -4
      tests/st/ops/gpu/test_reciprocal_op.py
  36. +7
    -7
      tests/st/ops/gpu/test_reduce_max_op.py
  37. +15
    -15
      tests/st/ops/gpu/test_reduce_mean_op.py
  38. +3
    -4
      tests/st/ops/gpu/test_relu6_grad_op.py
  39. +2
    -2
      tests/st/ops/gpu/test_relu6_op.py
  40. +2
    -2
      tests/st/ops/gpu/test_relu_op.py
  41. +2
    -2
      tests/st/ops/gpu/test_select_op.py
  42. +2
    -2
      tests/st/ops/gpu/test_slice.py
  43. +0
    -1
      tests/st/ops/gpu/test_slice_grad.py
  44. +0
    -4
      tests/st/ops/gpu/test_softmax_cross_entropy_with_logits_op.py
  45. +2
    -2
      tests/st/ops/gpu/test_softmax_op.py
  46. +0
    -2
      tests/st/ops/gpu/test_sparse_softmax_cross_entropy_with_logits_op.py
  47. +0
    -1
      tests/st/ops/gpu/test_sqrt_op.py
  48. +10
    -10
      tests/st/ops/gpu/test_sub_op.py
  49. +3
    -3
      tests/st/ops/gpu/test_tile_op.py
  50. +0
    -3
      tests/st/ops/gpu/test_unsorted_segment_sum.py
  51. +4
    -7
      tests/st/ops/gpu/test_zeroslike_op.py

+ 4
- 4
tests/st/ops/gpu/test_argmax_op.py View File

@@ -48,15 +48,15 @@ def test_argmax():
expect2 = np.array([1, 0, 0, 0]).astype(np.int32) expect2 = np.array([1, 0, 0, 0]).astype(np.int32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
Argmax = NetArgmax()
output = Argmax(x)
argmax = NetArgmax()
output = argmax(x)
assert (output[0].asnumpy() == expect1).all() assert (output[0].asnumpy() == expect1).all()
assert (output[1].asnumpy() == expect2).all() assert (output[1].asnumpy() == expect2).all()
assert (output[2].asnumpy() == expect2).all() assert (output[2].asnumpy() == expect2).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
Argmax1 = NetArgmax()
output1 = Argmax(x)
argmax1 = NetArgmax()
output1 = argmax1(x)
assert (output1[0].asnumpy() == expect1).all() assert (output1[0].asnumpy() == expect1).all()
assert (output1[1].asnumpy() == expect2).all() assert (output1[1].asnumpy() == expect2).all()
assert (output1[2].asnumpy() == expect2).all() assert (output1[2].asnumpy() == expect2).all()

+ 4
- 4
tests/st/ops/gpu/test_assign_op.py View File

@@ -23,13 +23,13 @@ from mindspore.ops import operations as P




class Net(nn.Cell): class Net(nn.Cell):
def __init__(self, value):
def __init__(self, param):
super(Net, self).__init__() super(Net, self).__init__()
self.var = Parameter(value, name="var")
self.var = Parameter(param, name="var")
self.assign = P.Assign() self.assign = P.Assign()


def construct(self, value):
return self.assign(self.var, value)
def construct(self, param):
return self.assign(self.var, param)




x = np.array([[1.2, 1], [1, 0]]).astype(np.float32) x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)


+ 5
- 18
tests/st/ops/gpu/test_batch_matmul.py View File

@@ -20,9 +20,6 @@ import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common import dtype as mstype from mindspore.common import dtype as mstype
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P




@@ -38,7 +35,7 @@ class BatchMatMulNet(nn.Cell):
return self.batch_matmul(x, y) return self.batch_matmul(x, y)




def test_4D():
def test_4d():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32) input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32) input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32)


@@ -60,7 +57,7 @@ def test_4D():
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_4D_transpose_a():
def test_4d_transpose_a():
input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32) input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32) input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32)


@@ -82,7 +79,7 @@ def test_4D_transpose_a():
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_4D_transpose_b():
def test_4d_transpose_b():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32) input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32) input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32)


@@ -104,7 +101,7 @@ def test_4D_transpose_b():
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_4D_transpose_ab():
def test_4d_transpose_ab():
input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32) input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32) input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32)


@@ -122,17 +119,7 @@ def test_4D_transpose_ab():
[[5612, 5810, 6008, 6206]]]] [[5612, 5810, 6008, 6206]]]]
assert (output.asnumpy() == expect).all() assert (output.asnumpy() == expect).all()



class BatchMatMulNet(nn.Cell):
def __init__(self, transpose_a=False, transpose_b=False):
super(BatchMatMulNet, self).__init__()
self.batch_matmul = P.BatchMatMul(transpose_a, transpose_b)

def construct(self, x, y):
return self.batch_matmul(x, y)


def test_4D_fp16():
def test_4d_fp16():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float16) input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float16)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float16) input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float16)




+ 7
- 8
tests/st/ops/gpu/test_batchnorm_fold2_op.py View File

@@ -68,10 +68,10 @@ def test_batchnrom_fold2():
current_step = np.array([0]).astype('int32') current_step = np.array([0]).astype('int32')
output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean), output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean),
Tensor(running_std), Tensor(running_mean), Tensor(current_step)) Tensor(running_std), Tensor(running_mean), Tensor(current_step))
expect = (x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1,
1) if current_step >= freeze_bn else
x * (running_std / batch_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1,
1))
expect = ((x + beta.reshape(-1, 1, 1) -
(gamma * running_mean / running_std).reshape(-1, 1, 1) if current_step >= freeze_bn else
x * (running_std / batch_std).reshape(-1, 1, 1) +
(beta - gamma * batch_mean / batch_std).reshape(-1, 1, 1)))
error = np.ones(shape=expect.shape) * 1.0e-6 error = np.ones(shape=expect.shape) * 1.0e-6
diff = output.asnumpy() - expect diff = output.asnumpy() - expect
assert np.all(diff < error) assert np.all(diff < error)
@@ -80,10 +80,9 @@ def test_batchnrom_fold2():
current_step = np.array([100000]).astype('int32') current_step = np.array([100000]).astype('int32')
output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean), Tensor(running_std), output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean), Tensor(running_std),
Tensor(running_mean), Tensor(current_step)) Tensor(running_mean), Tensor(current_step))
expect = (x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1,
1) if current_step >= freeze_bn else
x * (batch_std / running_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1,
1))
expect = ((x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1, 1)
if current_step >= freeze_bn else x * (batch_std / running_std).reshape(-1, 1, 1) +
(beta - gamma * batch_mean / batch_std).reshape(-1, 1, 1)))
error = np.ones(shape=expect.shape) * 1.0e-6 error = np.ones(shape=expect.shape) * 1.0e-6
diff = output.asnumpy() - expect diff = output.asnumpy() - expect
assert np.all(diff < error) assert np.all(diff < error)


+ 2
- 2
tests/st/ops/gpu/test_batchnorm_fold_grad_op.py View File

@@ -38,8 +38,8 @@ class Net(nn.Cell):


def np_result(d_batch_mean, d_batch_std, x, batch_mean, batch_std): def np_result(d_batch_mean, d_batch_std, x, batch_mean, batch_std):
n = x.shape[0] * x.shape[2] * x.shape[3] n = x.shape[0] * x.shape[2] * x.shape[3]
dx = d_batch_mean.reshape(1, -1, 1, 1) / n + d_batch_std.reshape(1, -1, 1, 1) * (
x - batch_mean.reshape(1, -1, 1, 1)) / batch_std.reshape(1, -1, 1, 1) / n
dx = (d_batch_mean.reshape(1, -1, 1, 1) / n + d_batch_std.reshape(1, -1, 1, 1) *
(x - batch_mean.reshape(1, -1, 1, 1)) / batch_std.reshape(1, -1, 1, 1) / n)
return dx return dx






+ 2
- 2
tests/st/ops/gpu/test_batchnorm_fold_op.py View File

@@ -86,7 +86,7 @@ def test_batchnorm_fold2():
ms_var = Tensor(variance) ms_var = Tensor(variance)
batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var, batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var,
Tensor(current_step)) Tensor(current_step))
expect1, expect2, expect3, expect4, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12)
expect1, expect2, expect3, _, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12)
assert np.allclose(batch_mean.asnumpy(), expect1, rtol=1.e-7, atol=1.e-5) assert np.allclose(batch_mean.asnumpy(), expect1, rtol=1.e-7, atol=1.e-5)
assert np.allclose(batch_var.asnumpy(), expect2, rtol=1.e-7, atol=1.e-5) assert np.allclose(batch_var.asnumpy(), expect2, rtol=1.e-7, atol=1.e-5)
assert np.allclose(ms_mean.asnumpy(), expect3, rtol=1.e-7, atol=1.e-5) assert np.allclose(ms_mean.asnumpy(), expect3, rtol=1.e-7, atol=1.e-5)
@@ -108,7 +108,7 @@ def test_batchnorm_fold_freeze():
ms_var = Tensor(variance) ms_var = Tensor(variance)
batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var, batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var,
Tensor(current_step)) Tensor(current_step))
expect1, expect2, expect3, expect4, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12)
_, _, _, _, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12)
assert np.allclose(batch_mean.asnumpy(), np.zeros_like(mean), rtol=1.e-7, atol=1.e-5) assert np.allclose(batch_mean.asnumpy(), np.zeros_like(mean), rtol=1.e-7, atol=1.e-5)
assert np.allclose(batch_var.asnumpy(), np.ones_like(mean), rtol=1.e-7, atol=1.e-5) assert np.allclose(batch_var.asnumpy(), np.ones_like(mean), rtol=1.e-7, atol=1.e-5)
assert np.allclose(ms_mean.asnumpy(), mean, rtol=1.e-7, atol=1.e-5) assert np.allclose(ms_mean.asnumpy(), mean, rtol=1.e-7, atol=1.e-5)


+ 0
- 3
tests/st/ops/gpu/test_batchnorm_op.py View File

@@ -61,9 +61,6 @@ def test_train_forward():
[-0.0281, 0.9119, 1.3819, 1.8518], [-0.0281, 0.9119, 1.3819, 1.8518],
[2.7918, 0.4419, -0.4981, 0.9119], [2.7918, 0.4419, -0.4981, 0.9119],
[1.8518, 0.9119, 2.3218, -0.9680]]]]).astype(np.float32) [1.8518, 0.9119, 2.3218, -0.9680]]]]).astype(np.float32)
grad = np.array([[
[[1, 2, 7, 1], [4, 2, 1, 3], [1, 6, 5, 2], [2, 4, 3, 2]],
[[9, 4, 3, 5], [1, 3, 7, 6], [5, 7, 9, 9], [1, 4, 6, 8]]]]).astype(np.float32)


weight = np.ones(2).astype(np.float32) weight = np.ones(2).astype(np.float32)
bias = np.ones(2).astype(np.float32) bias = np.ones(2).astype(np.float32)


+ 0
- 2
tests/st/ops/gpu/test_broadcast_op.py View File

@@ -16,10 +16,8 @@
import numpy as np import numpy as np
import pytest import pytest


import mindspore.common.dtype as mstype
import mindspore.context as context import mindspore.context as context
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore.nn import Cell
from mindspore.ops import operations as P from mindspore.ops import operations as P






+ 4
- 4
tests/st/ops/gpu/test_cast_op.py View File

@@ -47,9 +47,9 @@ def test_cast():
net = Net() net = Net()
output = net(x0, t0, x1, t1) output = net(x0, t0, x1, t1)
type0 = output[0].asnumpy().dtype type0 = output[0].asnumpy().dtype
assert (type0 == 'float16')
assert type0 == 'float16'
type1 = output[1].asnumpy().dtype type1 = output[1].asnumpy().dtype
assert (type1 == 'float32')
assert type1 == 'float32'




@pytest.mark.level0 @pytest.mark.level0
@@ -65,6 +65,6 @@ def test_cast1():
net = Net() net = Net()
output = net(x0, t0, x1, t1) output = net(x0, t0, x1, t1)
type0 = output[0].asnumpy().dtype type0 = output[0].asnumpy().dtype
assert (type0 == 'float32')
assert type0 == 'float32'
type1 = output[1].asnumpy().dtype type1 = output[1].asnumpy().dtype
assert (type1 == 'float32')
assert type1 == 'float32'

+ 0
- 7
tests/st/ops/gpu/test_conv2d_backprop_filter_op.py View File

@@ -66,13 +66,6 @@ def test_conv2d_backprop_filter():
[-3, -2, -3, -16]]]]).astype(np.float32)) [-3, -2, -3, -16]]]]).astype(np.float32))
conv2d_filter = Conv2dFilter() conv2d_filter = Conv2dFilter()
output = conv2d_filter(out, x, w) output = conv2d_filter(out, x, w)
print("================================")
"""
expect output:
[[[[ -60, -142, -265]
[-104, -211, -322]
[-102, -144, -248]]]]
"""
expect = np.array([[[[-60, -142, -265], expect = np.array([[[[-60, -142, -265],
[-104, -211, -322], [-104, -211, -322],
[-102, -144, -248]]]]).astype(np.float32) [-102, -144, -248]]]]).astype(np.float32)


+ 0
- 2
tests/st/ops/gpu/test_conv2d_backprop_input_op.py View File

@@ -20,8 +20,6 @@ import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P


context.set_context(device_target='GPU') context.set_context(device_target='GPU')


+ 0
- 10
tests/st/ops/gpu/test_conv2d_op.py View File

@@ -57,16 +57,6 @@ def test_conv2d():
conv2d = NetConv2d() conv2d = NetConv2d()
output = conv2d(x, w) output = conv2d(x, w)
assert (output.asnumpy() == expect).all() assert (output.asnumpy() == expect).all()
"""
expect output:
[[[[ 45. 48. 51.]
[ 54. 57. 60.]
[ 63. 66. 69.]]

[[126. 138. 150.]
[162. 174. 186.]
[198. 210. 222.]]]]
"""
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
conv2d = NetConv2d() conv2d = NetConv2d()
output = conv2d(x, w) output = conv2d(x, w)


+ 2
- 3
tests/st/ops/gpu/test_correction_mul_grad_op.py View File

@@ -14,7 +14,6 @@
# ============================================================================ # ============================================================================


import numpy as np import numpy as np
import os
import pytest import pytest


import mindspore.context as context import mindspore.context as context
@@ -51,5 +50,5 @@ def test_correction_mul_grad():
expect = [0, 0] expect = [0, 0]
expect[0] = (dout * np.reshape(batch_std / running_std, (co, 1, 1, 1))) expect[0] = (dout * np.reshape(batch_std / running_std, (co, 1, 1, 1)))
expect[1] = (np.sum(dout * x, (1, 2, 3)) / running_std) expect[1] = (np.sum(dout * x, (1, 2, 3)) / running_std)
for i, v in enumerate(output):
assert (np.allclose(output[i].asnumpy(), expect[i], rtol=1.e-5, atol=1.e-5))
for i, _ in enumerate(output):
assert np.allclose(output[i].asnumpy(), expect[i], rtol=1.e-5, atol=1.e-5)

+ 1
- 1
tests/st/ops/gpu/test_correction_mul_op.py View File

@@ -50,4 +50,4 @@ def test_correction_mul():
diff = output.asnumpy() - expect diff = output.asnumpy() - expect
assert np.all(diff < error) assert np.all(diff < error)
assert np.all(diff > error * -1) assert np.all(diff > error * -1)
assert (output.shape() == expect.shape)
assert output.shape() == expect.shape

+ 4
- 4
tests/st/ops/gpu/test_dense_op.py View File

@@ -68,8 +68,8 @@ class GradData(nn.Cell):
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
self.network = network self.network = network


def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, inputs, output_grad):
return self.grad(self.network)(inputs, output_grad)




class GradWeight(nn.Cell): class GradWeight(nn.Cell):
@@ -172,8 +172,8 @@ class Grad(nn.Cell):
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
self.network = network self.network = network


def construct(self, input, bias, dy):
return self.grad(self.network)(input, bias, dy)
def construct(self, inputs, bias, dy):
return self.grad(self.network)(inputs, bias, dy)




@pytest.mark.level0 @pytest.mark.level0


+ 4
- 4
tests/st/ops/gpu/test_equal_op.py View File

@@ -50,16 +50,16 @@ def test_equal():
equal = NetEqual() equal = NetEqual()
output0 = equal(x0, y0) output0 = equal(x0, y0)
assert np.all(output0.asnumpy() == expect0) assert np.all(output0.asnumpy() == expect0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
output1 = equal(x1, y1) output1 = equal(x1, y1)
assert np.all(output1.asnumpy() == expect1) assert np.all(output1.asnumpy() == expect1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
equal = NetEqual() equal = NetEqual()
output0 = equal(x0, y0) output0 = equal(x0, y0)
assert np.all(output0.asnumpy() == expect0) assert np.all(output0.asnumpy() == expect0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
output1 = equal(x1, y1) output1 = equal(x1, y1)
assert np.all(output1.asnumpy() == expect1) assert np.all(output1.asnumpy() == expect1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape

+ 4
- 4
tests/st/ops/gpu/test_exp_op.py View File

@@ -49,19 +49,19 @@ def test_exp():
output0 = exp(x0) output0 = exp(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
output1 = exp(x1) output1 = exp(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape


context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
exp = NetExp() exp = NetExp()
output0 = exp(x0) output0 = exp(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
output1 = exp(x1) output1 = exp(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape

+ 0
- 6
tests/st/ops/gpu/test_flatten_grad_op.py View File

@@ -19,7 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _grad_ops as G




@@ -38,11 +37,6 @@ class NetFlattenGrad(nn.Cell):
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_flatten_grad(): def test_flatten_grad():
x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)) x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
"""
expect output:
[ [-0.1 0.3 3.6]
[ 0.4 0.5 -3.2] ]
"""
expect = np.array([[-0.1, 0.3, 3.6], expect = np.array([[-0.1, 0.3, 3.6],
[0.4, 0.5, -3.2]]).astype(np.float32) [0.4, 0.5, -3.2]]).astype(np.float32)




+ 0
- 5
tests/st/ops/gpu/test_flatten_op.py View File

@@ -37,11 +37,6 @@ class NetFlatten(nn.Cell):
def test_flatten(): def test_flatten():
x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)) x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
expect = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32) expect = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)
"""
expect output:
[[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]
"""

context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
flatten = NetFlatten() flatten = NetFlatten()
output = flatten(x) output = flatten(x)


+ 4
- 4
tests/st/ops/gpu/test_float_status_op.py View File

@@ -68,7 +68,7 @@ x3 = np.array([[1, 2], [3, 4], [5.0, 88.0]]).astype(np.float32)
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_status(): def test_status():
ms_status = Net();
ms_status = Net()
output1 = ms_status(Tensor(x1)) output1 = ms_status(Tensor(x1))
output2 = ms_status(Tensor(x2)) output2 = ms_status(Tensor(x2))
output3 = ms_status(Tensor(x3)) output3 = ms_status(Tensor(x3))
@@ -84,7 +84,7 @@ def test_status():
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_nan(): def test_nan():
ms_isnan = Netnan();
ms_isnan = Netnan()
output1 = ms_isnan(Tensor(x1)) output1 = ms_isnan(Tensor(x1))
output2 = ms_isnan(Tensor(x2)) output2 = ms_isnan(Tensor(x2))
output3 = ms_isnan(Tensor(x3)) output3 = ms_isnan(Tensor(x3))
@@ -100,7 +100,7 @@ def test_nan():
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_inf(): def test_inf():
ms_isinf = Netinf();
ms_isinf = Netinf()
output1 = ms_isinf(Tensor(x1)) output1 = ms_isinf(Tensor(x1))
output2 = ms_isinf(Tensor(x2)) output2 = ms_isinf(Tensor(x2))
output3 = ms_isinf(Tensor(x3)) output3 = ms_isinf(Tensor(x3))
@@ -116,7 +116,7 @@ def test_inf():
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_finite(): def test_finite():
ms_isfinite = Netfinite();
ms_isfinite = Netfinite()
output1 = ms_isfinite(Tensor(x1)) output1 = ms_isfinite(Tensor(x1))
output2 = ms_isfinite(Tensor(x2)) output2 = ms_isfinite(Tensor(x2))
output3 = ms_isfinite(Tensor(x3)) output3 = ms_isfinite(Tensor(x3))


+ 10
- 10
tests/st/ops/gpu/test_gather_op.py View File

@@ -913,16 +913,16 @@ class GatherNet2(nn.Cell):
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_gather2(): def test_gather2():
x = Tensor(np.array([[4., 5., 4., 1., 5., ],
[4., 9., 5., 6., 4., ],
[9., 8., 4., 3., 6., ],
[0., 4., 2., 2., 8., ],
[1., 8., 6., 2., 8., ],
[8., 1., 9., 7., 3., ],
[7., 9., 2., 5., 7., ],
[9., 8., 6., 8., 5., ],
[3., 7., 2., 7., 4., ],
[4., 2., 8., 2., 9., ]]
x = Tensor(np.array([[4., 5., 4., 1., 5.,],
[4., 9., 5., 6., 4.,],
[9., 8., 4., 3., 6.,],
[0., 4., 2., 2., 8.,],
[1., 8., 6., 2., 8.,],
[8., 1., 9., 7., 3.,],
[7., 9., 2., 5., 7.,],
[9., 8., 6., 8., 5.,],
[3., 7., 2., 7., 4.,],
[4., 2., 8., 2., 9.,]]
).astype(np.float32)) ).astype(np.float32))


indices = Tensor(np.array([[4000, 1, 300000]]).astype(np.int32)) indices = Tensor(np.array([[4000, 1, 300000]]).astype(np.int32))


+ 0
- 2
tests/st/ops/gpu/test_layer_norm_grad_op.py View File

@@ -19,8 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _grad_ops as G


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")


+ 4
- 4
tests/st/ops/gpu/test_log_op.py View File

@@ -50,10 +50,10 @@ def test_log():
output1 = log(x1) output1 = log(x1)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
log = NetLog() log = NetLog()
@@ -61,7 +61,7 @@ def test_log():
output1 = log(x1) output1 = log(x1)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape

+ 6
- 6
tests/st/ops/gpu/test_logical_op.py View File

@@ -27,8 +27,8 @@ class NetAnd(Cell):
super(NetAnd, self).__init__() super(NetAnd, self).__init__()
self.logicaland = P.LogicalAnd() self.logicaland = P.LogicalAnd()


def construct(self, x, y):
return self.logicaland(x, y)
def construct(self, input_x, input_y):
return self.logicaland(input_x, input_y)




class NetOr(Cell): class NetOr(Cell):
@@ -36,8 +36,8 @@ class NetOr(Cell):
super(NetOr, self).__init__() super(NetOr, self).__init__()
self.logicalor = P.LogicalOr() self.logicalor = P.LogicalOr()


def construct(self, x, y):
return self.logicalor(x, y)
def construct(self, input_x, input_y):
return self.logicalor(input_x, input_y)




class NetNot(Cell): class NetNot(Cell):
@@ -45,8 +45,8 @@ class NetNot(Cell):
super(NetNot, self).__init__() super(NetNot, self).__init__()
self.logicalnot = P.LogicalNot() self.logicalnot = P.LogicalNot()


def construct(self, x):
return self.logicalnot(x)
def construct(self, input_x):
return self.logicalnot(input_x)




x = np.array([True, False, False]).astype(np.bool) x = np.array([True, False, False]).astype(np.bool)


+ 3
- 3
tests/st/ops/gpu/test_logsoftmax_op.py View File

@@ -35,8 +35,8 @@ def test_logsoftmax():
[-3.452001, -1.2546989, -1.4618242, -0.79552734]]).astype(np.float32) [-3.452001, -1.2546989, -1.4618242, -0.79552734]]).astype(np.float32)


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
LogSoftmax = P.LogSoftmax()
output = LogSoftmax(Tensor(x))
logSoftmax = P.LogSoftmax()
output = logSoftmax(Tensor(x))
assert np.allclose(output.asnumpy(), expect) assert np.allclose(output.asnumpy(), expect)




@@ -134,7 +134,7 @@ def test_logsoftmaxgrad1():
[-0.01768187, 0.26872346, -0.5037259, -0.3376058, -0.3291146, 1.4752979, -0.25972134, 0.8869053, [-0.01768187, 0.26872346, -0.5037259, -0.3376058, -0.3291146, 1.4752979, -0.25972134, 0.8869053,
0.25325722, -0.13946185], 0.25325722, -0.13946185],
[-0.5247209, 0.70192003, -1.0808672, 1.4858199, -1.1273282, 0.20728993, 0.38918605, 0.08162117, [-0.5247209, 0.70192003, -1.0808672, 1.4858199, -1.1273282, 0.20728993, 0.38918605, 0.08162117,
0.10445589, 0.3220427]], ).astype(np.float32)
0.10445589, 0.3220427]],).astype(np.float32)


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = LogSoftmax(0) net = LogSoftmax(0)


+ 7
- 8
tests/st/ops/gpu/test_lstm_op.py View File

@@ -23,7 +23,6 @@ from mindspore.common.initializer import initializer
from mindspore.common.parameter import ParameterTuple, Parameter from mindspore.common.parameter import ParameterTuple, Parameter
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore.ops import composite as C from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.ops import operations as P from mindspore.ops import operations as P


context.set_context(device_target='GPU') context.set_context(device_target='GPU')
@@ -81,7 +80,7 @@ class LstmNet(nn.Cell):
-2.9055e-01, -2.8129e-01, 6.0219e-01, 4.9193e-01, 3.3115e-01], -2.9055e-01, -2.8129e-01, 6.0219e-01, 4.9193e-01, 3.3115e-01],
[-5.6894e-01, -5.0359e-01, 4.7491e-01, 5.8110e-01, -5.4921e-01, [-5.6894e-01, -5.0359e-01, 4.7491e-01, 5.8110e-01, -5.4921e-01,
-6.1343e-01, -5.8236e-02, -3.7682e-01, 4.8338e-01, -2.1551e-01]]).astype(np.float32).reshape( -6.1343e-01, -5.8236e-02, -3.7682e-01, 4.8338e-01, -2.1551e-01]]).astype(np.float32).reshape(
[1, -1])
[1, -1])


whh = np.array([[-0.4820, -0.2350], whh = np.array([[-0.4820, -0.2350],
[-0.1195, 0.0519], [-0.1195, 0.0519],
@@ -205,7 +204,7 @@ class BiLstmNet(nn.Cell):
[0.0299, -0.6071, -0.4683, -0.3363, -0.0044, -0.0007, 0.2700, 0.0202, -0.2880, -0.6869], [0.0299, -0.6071, -0.4683, -0.3363, -0.0044, -0.0007, 0.2700, 0.0202, -0.2880, -0.6869],
[0.3025, -0.2461, -0.5128, 0.6327, -0.1438, -0.5100, 0.1924, 0.2023, 0.3129, 0.2271], [0.3025, -0.2461, -0.5128, 0.6327, -0.1438, -0.5100, 0.1924, 0.2023, 0.3129, 0.2271],
[0.3777, 0.0546, 0.4790, -0.1895, 0.3588, 0.4490, 0.6850, 0.6240, -0.2739, -0.4474]]).astype( [0.3777, 0.0546, 0.4790, -0.1895, 0.3588, 0.4490, 0.6850, 0.6240, -0.2739, -0.4474]]).astype(
np.float32).reshape([1, -1])
np.float32).reshape([1, -1])


whh = np.array([[0.6346, -0.6366], whh = np.array([[0.6346, -0.6366],
[-0.0248, -0.6156], [-0.0248, -0.6156],
@@ -394,7 +393,7 @@ class MultiLayerBiLstmNet(nn.Cell):
5.5428e-01, 1.0429e-01, 5.1322e-01, 1.9406e-01], 5.5428e-01, 1.0429e-01, 5.1322e-01, 1.9406e-01],
[3.9698e-01, -5.2101e-01, 5.1372e-01, -3.9866e-01, 1.0115e-01, -4.1290e-02, [3.9698e-01, -5.2101e-01, 5.1372e-01, -3.9866e-01, 1.0115e-01, -4.1290e-02,
-3.0980e-01, 2.1607e-01, 4.8420e-01, -1.9267e-01]]).astype(np.float32).reshape( -3.0980e-01, 2.1607e-01, 4.8420e-01, -1.9267e-01]]).astype(np.float32).reshape(
[1, -1])
[1, -1])


whh_reverse_l0 = np.array([[-0.3231, -0.3960], whh_reverse_l0 = np.array([[-0.3231, -0.3960],
[-0.1625, -0.3032], [-0.1625, -0.3032],
@@ -460,7 +459,7 @@ class MultiLayerBiLstmNet(nn.Cell):
weight weight
layer0 layer0
forward forward
wih
wih
whh whh
reverse reverse
wih wih
@@ -662,7 +661,7 @@ class Net(nn.Cell):
[-0.4520, 0.4201, -0.2374, -0.1556, -0.4175, -0.6834, 0.3096, -0.1581, 0.0127, 0.6872], [-0.4520, 0.4201, -0.2374, -0.1556, -0.4175, -0.6834, 0.3096, -0.1581, 0.0127, 0.6872],
[0.1788, -0.5442, -0.3675, -0.2887, -0.3004, 0.5813, 0.1618, 0.6875, -0.4678, 0.0071], [0.1788, -0.5442, -0.3675, -0.2887, -0.3004, 0.5813, 0.1618, 0.6875, -0.4678, 0.0071],
[-0.6453, -0.2528, 0.5675, -0.5154, -0.4129, -0.0214, 0.5539, 0.0343, 0.1712, 0.5644]]).astype( [-0.6453, -0.2528, 0.5675, -0.5154, -0.4129, -0.0214, 0.5539, 0.0343, 0.1712, 0.5644]]).astype(
np.float32).reshape([1, -1])
np.float32).reshape([1, -1])


whh_reverse_l0 = np.array([[-0.6657, 0.6330], whh_reverse_l0 = np.array([[-0.6657, 0.6330],
[-0.2290, 0.6556], [-0.2290, 0.6556],
@@ -728,7 +727,7 @@ class Net(nn.Cell):
weight weight
layer0 layer0
forward forward
wih
wih
whh whh
reverse reverse
wih wih
@@ -927,7 +926,7 @@ class LstmNetWithDropout(nn.Cell):
[0.5142, 0.0790, -0.1123, -0.2351, 0.3982, -0.6351, 0.5906, 0.3917, -0.0850, -0.5397], [0.5142, 0.0790, -0.1123, -0.2351, 0.3982, -0.6351, 0.5906, 0.3917, -0.0850, -0.5397],
[-0.4795, -0.6576, 0.5693, 0.0047, -0.6626, 0.1013, -0.4015, -0.4040, -0.2817, 0.4430], [-0.4795, -0.6576, 0.5693, 0.0047, -0.6626, 0.1013, -0.4015, -0.4040, -0.2817, 0.4430],
[0.0251, -0.3035, -0.6026, 0.2693, -0.2749, 0.1501, -0.5778, 0.5570, -0.7065, -0.6196]]).astype( [0.0251, -0.3035, -0.6026, 0.2693, -0.2749, 0.1501, -0.5778, 0.5570, -0.7065, -0.6196]]).astype(
np.float32).reshape([1, -1])
np.float32).reshape([1, -1])


whh = np.array([[-0.4344, -0.2529], whh = np.array([[-0.4344, -0.2529],
[0.0377, 0.7046], [0.0377, 0.7046],


+ 4
- 4
tests/st/ops/gpu/test_maximum_op.py View File

@@ -53,15 +53,15 @@ def test_maximum():
error = np.ones(shape=[1, 3]) * 1.0e-5 error = np.ones(shape=[1, 3]) * 1.0e-5


context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
max = Net()
output = max(x, y)
max_op = Net()
output = max_op(x, y)
diff = output.asnumpy() - expect diff = output.asnumpy() - expect
assert np.all(diff < error) assert np.all(diff < error)
assert np.all(-diff < error) assert np.all(-diff < error)


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
max = Net()
output = max(x, y)
max_op_2 = Net()
output = max_op_2(x, y)
diff = output.asnumpy() - expect diff = output.asnumpy() - expect
assert np.all(diff < error) assert np.all(diff < error)
assert np.all(-diff < error) assert np.all(-diff < error)


+ 0
- 1
tests/st/ops/gpu/test_maxpool_grad_gpu_op.py View File

@@ -19,7 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _grad_ops as G






+ 0
- 1
tests/st/ops/gpu/test_minimum_op.py View File

@@ -16,7 +16,6 @@
import numpy as np import numpy as np
import pytest import pytest


import mindspore.common.dtype as mstype
import mindspore.context as context import mindspore.context as context
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore.nn import Cell from mindspore.nn import Cell


+ 2
- 7
tests/st/ops/gpu/test_momentum_op.py View File

@@ -57,17 +57,12 @@ def test_momentum():
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
train_network.set_train() train_network.set_train()
losses = [] losses = []
for i in range(epoch):
for _ in range(epoch):
data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01) data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01)
label = Tensor(np.array([0]).astype(np.int32)) label = Tensor(np.array([0]).astype(np.int32))
loss = train_network(data, label) loss = train_network(data, label)
losses.append(loss) losses.append(loss)


"""
expect output:
[[0.04132498 0.00874167 0.00874167 0.00874167 0.00874167
0.00874167 0.00874167 0.00874167 0.00874167 0.00874167]]
"""
error = np.ones(shape=[1, 10]) * 1.0e-6
_ = np.ones(shape=[1, 10]) * 1.0e-6


return losses return losses

+ 10
- 10
tests/st/ops/gpu/test_mul_op.py View File

@@ -64,35 +64,35 @@ def test_mul():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape


output1 = mul(x1, y1) output1 = mul(x1, y1)
expect1 = np.multiply(x1_np, y1_np) expect1 = np.multiply(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape


output2 = mul(x2, y2) output2 = mul(x2, y2)
expect2 = np.multiply(x2_np, y2_np) expect2 = np.multiply(x2_np, y2_np)
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape)
assert output2.shape() == expect2.shape


output3 = mul(x3, y3) output3 = mul(x3, y3)
expect3 = np.multiply(x3_np, y3_np) expect3 = np.multiply(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape)
assert output3.shape() == expect3.shape


output4 = mul(x4, y4) output4 = mul(x4, y4)
expect4 = np.multiply(x4_np, y4_np) expect4 = np.multiply(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape)
assert output4.shape() == expect4.shape


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
mul = NetMul() mul = NetMul()
@@ -101,32 +101,32 @@ def test_mul():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape


output1 = mul(x1, y1) output1 = mul(x1, y1)
expect1 = np.multiply(x1_np, y1_np) expect1 = np.multiply(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape


output2 = mul(x2, y2) output2 = mul(x2, y2)
expect2 = np.multiply(x2_np, y2_np) expect2 = np.multiply(x2_np, y2_np)
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape)
assert output2.shape() == expect2.shape


output3 = mul(x3, y3) output3 = mul(x3, y3)
expect3 = np.multiply(x3_np, y3_np) expect3 = np.multiply(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape)
assert output3.shape() == expect3.shape


output4 = mul(x4, y4) output4 = mul(x4, y4)
expect4 = np.multiply(x4_np, y4_np) expect4 = np.multiply(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape)
assert output4.shape() == expect4.shape

+ 4
- 4
tests/st/ops/gpu/test_neg_op.py View File

@@ -49,19 +49,19 @@ def test_neg():
output0 = neg(x0) output0 = neg(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
output1 = neg(x1) output1 = neg(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
neg = NetNeg() neg = NetNeg()
output0 = neg(x0) output0 = neg(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
output1 = neg(x1) output1 = neg(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape

+ 0
- 1
tests/st/ops/gpu/test_one_hot_op.py View File

@@ -20,7 +20,6 @@ import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore.ops import operations as P


context.set_context(device_target='GPU') context.set_context(device_target='GPU')




+ 10
- 13
tests/st/ops/gpu/test_realdiv_op.py View File

@@ -19,9 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P




@@ -67,35 +64,35 @@ def test_real_div():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape


output1 = real_div(x1, y1) output1 = real_div(x1, y1)
expect1 = np.divide(x1_np, y1_np) expect1 = np.divide(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape


output2 = real_div(x2, y2) output2 = real_div(x2, y2)
expect2 = np.divide(x2_np, y2_np) expect2 = np.divide(x2_np, y2_np)
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape)
assert output2.shape() == expect2.shape


output3 = real_div(x3, y3) output3 = real_div(x3, y3)
expect3 = np.divide(x3_np, y3_np) expect3 = np.divide(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape)
assert output3.shape() == expect3.shape


output4 = real_div(x4, y4) output4 = real_div(x4, y4)
expect4 = np.divide(x4_np, y4_np) expect4 = np.divide(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape)
assert output4.shape() == expect4.shape


context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
real_div = NetRealDiv() real_div = NetRealDiv()
@@ -104,32 +101,32 @@ def test_real_div():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape


output1 = real_div(x1, y1) output1 = real_div(x1, y1)
expect1 = np.divide(x1_np, y1_np) expect1 = np.divide(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape


output2 = real_div(x2, y2) output2 = real_div(x2, y2)
expect2 = np.divide(x2_np, y2_np) expect2 = np.divide(x2_np, y2_np)
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape)
assert output2.shape() == expect2.shape


output3 = real_div(x3, y3) output3 = real_div(x3, y3)
expect3 = np.divide(x3_np, y3_np) expect3 = np.divide(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape)
assert output3.shape() == expect3.shape


output4 = real_div(x4, y4) output4 = real_div(x4, y4)
expect4 = np.divide(x4_np, y4_np) expect4 = np.divide(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape)
assert output4.shape() == expect4.shape

+ 4
- 4
tests/st/ops/gpu/test_reciprocal_op.py View File

@@ -49,19 +49,19 @@ def test_Reciprocal():
output0 = reciprocal(x0) output0 = reciprocal(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
output1 = reciprocal(x1) output1 = reciprocal(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
reciprocal = NetReciprocal() reciprocal = NetReciprocal()
output0 = reciprocal(x0) output0 = reciprocal(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
output1 = reciprocal(x1) output1 = reciprocal(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape

+ 7
- 7
tests/st/ops/gpu/test_reduce_max_op.py View File

@@ -128,43 +128,43 @@ def test_ReduceMax():
diff0 = abs(output[0].asnumpy() - expect0) diff0 = abs(output[0].asnumpy() - expect0)
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output[0].shape() == expect0.shape)
assert output[0].shape() == expect0.shape


expect1 = np.max(x1, axis=axis1, keepdims=keep_dims1) expect1 = np.max(x1, axis=axis1, keepdims=keep_dims1)
diff1 = abs(output[1].asnumpy() - expect1) diff1 = abs(output[1].asnumpy() - expect1)
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output[1].shape() == expect1.shape)
assert output[1].shape() == expect1.shape


expect2 = np.max(x2, axis=axis2, keepdims=keep_dims2) expect2 = np.max(x2, axis=axis2, keepdims=keep_dims2)
diff2 = abs(output[2].asnumpy() - expect2) diff2 = abs(output[2].asnumpy() - expect2)
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output[2].shape() == expect2.shape)
assert output[2].shape() == expect2.shape


expect3 = np.max(x3, axis=axis3, keepdims=keep_dims3) expect3 = np.max(x3, axis=axis3, keepdims=keep_dims3)
diff3 = abs(output[3].asnumpy() - expect3) diff3 = abs(output[3].asnumpy() - expect3)
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output[3].shape() == expect3.shape)
assert output[3].shape() == expect3.shape


expect4 = np.max(x4, axis=np_axis4, keepdims=keep_dims4) expect4 = np.max(x4, axis=np_axis4, keepdims=keep_dims4)
diff4 = abs(output[4].asnumpy() - expect4) diff4 = abs(output[4].asnumpy() - expect4)
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output[4].shape() == expect4.shape)
assert output[4].shape() == expect4.shape


expect5 = np.max(x5, axis=np_axis5, keepdims=keep_dims5) expect5 = np.max(x5, axis=np_axis5, keepdims=keep_dims5)
diff5 = abs(output[5].asnumpy() - expect5) diff5 = abs(output[5].asnumpy() - expect5)
error5 = np.ones(shape=expect5.shape) * 1.0e-5 error5 = np.ones(shape=expect5.shape) * 1.0e-5
assert np.all(diff5 < error5) assert np.all(diff5 < error5)
assert (output[5].shape() == expect5.shape)
assert output[5].shape() == expect5.shape


expect6 = np.max(x6, axis=axis6, keepdims=keep_dims6) expect6 = np.max(x6, axis=axis6, keepdims=keep_dims6)
diff6 = abs(output[6].asnumpy() - expect6) diff6 = abs(output[6].asnumpy() - expect6)
error6 = np.ones(shape=expect6.shape) * 1.0e-5 error6 = np.ones(shape=expect6.shape) * 1.0e-5
assert np.all(diff6 < error6) assert np.all(diff6 < error6)
assert (output[6].shape() == expect6.shape)
assert output[6].shape() == expect6.shape


expect7 = np.max(x7, axis=axis7, keepdims=keep_dims7) expect7 = np.max(x7, axis=axis7, keepdims=keep_dims7)
diff7 = abs(output[7].asnumpy() - expect7) diff7 = abs(output[7].asnumpy() - expect7)


+ 15
- 15
tests/st/ops/gpu/test_reduce_mean_op.py View File

@@ -180,88 +180,88 @@ def test_ReduceMean():
diff0 = abs(output[0].asnumpy() - expect0) diff0 = abs(output[0].asnumpy() - expect0)
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output[0].shape() == expect0.shape)
assert output[0].shape() == expect0.shape


expect1 = np.mean(x1, axis=axis1, keepdims=keep_dims1) expect1 = np.mean(x1, axis=axis1, keepdims=keep_dims1)
diff1 = abs(output[1].asnumpy() - expect1) diff1 = abs(output[1].asnumpy() - expect1)
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output[1].shape() == expect1.shape)
assert output[1].shape() == expect1.shape


expect2 = np.mean(x2, axis=axis2, keepdims=keep_dims2) expect2 = np.mean(x2, axis=axis2, keepdims=keep_dims2)
diff2 = abs(output[2].asnumpy() - expect2) diff2 = abs(output[2].asnumpy() - expect2)
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output[2].shape() == expect2.shape)
assert output[2].shape() == expect2.shape


expect3 = np.mean(x3, axis=axis3, keepdims=keep_dims3) expect3 = np.mean(x3, axis=axis3, keepdims=keep_dims3)
diff3 = abs(output[3].asnumpy() - expect3) diff3 = abs(output[3].asnumpy() - expect3)
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output[3].shape() == expect3.shape)
assert output[3].shape() == expect3.shape


expect4 = np.mean(x4, axis=axis4, keepdims=keep_dims4) expect4 = np.mean(x4, axis=axis4, keepdims=keep_dims4)
diff4 = abs(output[4].asnumpy() - expect4) diff4 = abs(output[4].asnumpy() - expect4)
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output[4].shape() == expect4.shape)
assert output[4].shape() == expect4.shape


expect5 = np.mean(x5, axis=axis5, keepdims=keep_dims5) expect5 = np.mean(x5, axis=axis5, keepdims=keep_dims5)
diff5 = abs(output[5].asnumpy() - expect5) diff5 = abs(output[5].asnumpy() - expect5)
error5 = np.ones(shape=expect5.shape) * 1.0e-5 error5 = np.ones(shape=expect5.shape) * 1.0e-5
assert np.all(diff5 < error5) assert np.all(diff5 < error5)
assert (output[5].shape() == expect5.shape)
assert output[5].shape() == expect5.shape


expect6 = np.mean(x6, axis=axis6, keepdims=keep_dims6) expect6 = np.mean(x6, axis=axis6, keepdims=keep_dims6)
diff6 = abs(output[6].asnumpy() - expect6) diff6 = abs(output[6].asnumpy() - expect6)
error6 = np.ones(shape=expect6.shape) * 1.0e-5 error6 = np.ones(shape=expect6.shape) * 1.0e-5
assert np.all(diff6 < error6) assert np.all(diff6 < error6)
assert (output[6].shape() == expect6.shape)
assert output[6].shape() == expect6.shape


expect7 = np.mean(x7, axis=axis7, keepdims=keep_dims7) expect7 = np.mean(x7, axis=axis7, keepdims=keep_dims7)
diff7 = abs(output[7].asnumpy() - expect7) diff7 = abs(output[7].asnumpy() - expect7)
error7 = np.ones(shape=expect7.shape) * 1.0e-5 error7 = np.ones(shape=expect7.shape) * 1.0e-5
assert np.all(diff7 < error7) assert np.all(diff7 < error7)
assert (output[7].shape() == expect7.shape)
assert output[7].shape() == expect7.shape


expect8 = np.mean(x8, axis=axis8, keepdims=keep_dims8) expect8 = np.mean(x8, axis=axis8, keepdims=keep_dims8)
diff8 = abs(output[8].asnumpy() - expect8) diff8 = abs(output[8].asnumpy() - expect8)
error8 = np.ones(shape=expect8.shape) * 1.0e-5 error8 = np.ones(shape=expect8.shape) * 1.0e-5
assert np.all(diff8 < error8) assert np.all(diff8 < error8)
assert (output[8].shape() == expect8.shape)
assert output[8].shape() == expect8.shape


expect9 = np.mean(x9, axis=axis9, keepdims=keep_dims9) expect9 = np.mean(x9, axis=axis9, keepdims=keep_dims9)
diff9 = abs(output[9].asnumpy() - expect9) diff9 = abs(output[9].asnumpy() - expect9)
error9 = np.ones(shape=expect9.shape) * 1.0e-5 error9 = np.ones(shape=expect9.shape) * 1.0e-5
assert np.all(diff9 < error9) assert np.all(diff9 < error9)
assert (output[9].shape() == expect9.shape)
assert output[9].shape() == expect9.shape


expect10 = np.mean(x10, axis=axis10, keepdims=keep_dims10) expect10 = np.mean(x10, axis=axis10, keepdims=keep_dims10)
diff10 = abs(output[10].asnumpy() - expect10) diff10 = abs(output[10].asnumpy() - expect10)
error10 = np.ones(shape=expect10.shape) * 1.0e-5 error10 = np.ones(shape=expect10.shape) * 1.0e-5
assert np.all(diff10 < error10) assert np.all(diff10 < error10)
assert (output[10].shape() == expect10.shape)
assert output[10].shape() == expect10.shape


expect11 = np.mean(x11, axis=axis11, keepdims=keep_dims11) expect11 = np.mean(x11, axis=axis11, keepdims=keep_dims11)
diff11 = abs(output[11].asnumpy() - expect11) diff11 = abs(output[11].asnumpy() - expect11)
error11 = np.ones(shape=expect11.shape) * 1.0e-5 error11 = np.ones(shape=expect11.shape) * 1.0e-5
assert np.all(diff11 < error11) assert np.all(diff11 < error11)
assert (output[11].shape() == expect11.shape)
assert output[11].shape() == expect11.shape


expect12 = np.mean(x12, axis=axis12, keepdims=keep_dims12) expect12 = np.mean(x12, axis=axis12, keepdims=keep_dims12)
diff12 = abs(output[12].asnumpy() - expect12) diff12 = abs(output[12].asnumpy() - expect12)
error12 = np.ones(shape=expect12.shape) * 1.0e-5 error12 = np.ones(shape=expect12.shape) * 1.0e-5
assert np.all(diff12 < error12) assert np.all(diff12 < error12)
assert (output[12].shape() == expect12.shape)
assert output[12].shape() == expect12.shape


expect13 = np.mean(x13, axis=axis13, keepdims=keep_dims13) expect13 = np.mean(x13, axis=axis13, keepdims=keep_dims13)
diff13 = abs(output[13].asnumpy() - expect13) diff13 = abs(output[13].asnumpy() - expect13)
error13 = np.ones(shape=expect13.shape) * 1.0e-5 error13 = np.ones(shape=expect13.shape) * 1.0e-5
assert np.all(diff13 < error13) assert np.all(diff13 < error13)
assert (output[13].shape() == expect13.shape)
assert output[13].shape() == expect13.shape


expect14 = np.mean(x14, axis=np_axis14, keepdims=keep_dims14) expect14 = np.mean(x14, axis=np_axis14, keepdims=keep_dims14)
diff14 = abs(output[14].asnumpy() - expect14) diff14 = abs(output[14].asnumpy() - expect14)
error14 = np.ones(shape=expect14.shape) * 1.0e-5 error14 = np.ones(shape=expect14.shape) * 1.0e-5
assert np.all(diff14 < error14) assert np.all(diff14 < error14)
assert (output[14].shape() == expect14.shape)
assert output[14].shape() == expect14.shape

+ 3
- 4
tests/st/ops/gpu/test_relu6_grad_op.py View File

@@ -19,7 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _grad_ops as G




@@ -42,9 +41,9 @@ def test_relu6_grad():
dy = Tensor(np.array([[[[1, 1, 1], dy = Tensor(np.array([[[[1, 1, 1],
[1, 1, 1], [1, 1, 1],
[1, 1, 1]]]]).astype(np.float32)) [1, 1, 1]]]]).astype(np.float32))
expect = np.array([[[[0, 1, 0, ],
[1, 0, 0, ],
[0, 1, 0, ]]]]).astype(np.float32)
expect = np.array([[[[0, 1, 0,],
[1, 0, 0,],
[0, 1, 0,]]]]).astype(np.float32)
error = np.ones(shape=[3, 3]) * 1.0e-6 error = np.ones(shape=[3, 3]) * 1.0e-6


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")


+ 2
- 2
tests/st/ops/gpu/test_relu6_op.py View File

@@ -38,8 +38,8 @@ def test_relu6():
x = Tensor(np.array([[[[-1, 1, 10], x = Tensor(np.array([[[[-1, 1, 10],
[5.9, 6.1, 6], [5.9, 6.1, 6],
[10, 1, -1]]]]).astype(np.float32)) [10, 1, -1]]]]).astype(np.float32))
expect = np.array([[[[0, 1, 6, ],
[5.9, 6, 6, ],
expect = np.array([[[[0, 1, 6,],
[5.9, 6, 6,],
[6, 1, 0.]]]]).astype(np.float32) [6, 1, 0.]]]]).astype(np.float32)


context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")


+ 2
- 2
tests/st/ops/gpu/test_relu_op.py View File

@@ -38,8 +38,8 @@ def test_relu():
x = Tensor(np.array([[[[-1, 1, 10], x = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1], [1, -1, 1],
[10, 1, -1]]]]).astype(np.float32)) [10, 1, -1]]]]).astype(np.float32))
expect = np.array([[[[0, 1, 10, ],
[1, 0, 1, ],
expect = np.array([[[[0, 1, 10,],
[1, 0, 1,],
[10, 1, 0.]]]]).astype(np.float32) [10, 1, 0.]]]]).astype(np.float32)


context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")


+ 2
- 2
tests/st/ops/gpu/test_select_op.py View File

@@ -27,8 +27,8 @@ class Net(nn.Cell):
super(Net, self).__init__() super(Net, self).__init__()
self.select = P.Select() self.select = P.Select()


def construct(self, cond, x, y):
return self.select(cond, x, y)
def construct(self, cond, input_x, input_y):
return self.select(cond, input_x, input_y)




cond = np.array([[True, False], [True, False]]).astype(np.bool) cond = np.array([[True, False], [True, False]]).astype(np.bool)


+ 2
- 2
tests/st/ops/gpu/test_slice.py View File

@@ -41,8 +41,8 @@ def test_slice():
[[4., -4., 4.]]] [[4., -4., 4.]]]


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
slice = Slice()
output = slice(x)
slice_op = Slice()
output = slice_op(x)
assert (output.asnumpy() == expect).all() assert (output.asnumpy() == expect).all()






+ 0
- 1
tests/st/ops/gpu/test_slice_grad.py View File

@@ -20,7 +20,6 @@ import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _grad_ops as G


context.set_context(device_target='GPU') context.set_context(device_target='GPU')


+ 0
- 4
tests/st/ops/gpu/test_softmax_cross_entropy_with_logits_op.py View File

@@ -19,10 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter



class NetSoftmaxCrossEntropyWithLogits(nn.Cell): class NetSoftmaxCrossEntropyWithLogits(nn.Cell):
def __init__(self): def __init__(self):


+ 2
- 2
tests/st/ops/gpu/test_softmax_op.py View File

@@ -116,7 +116,7 @@ def test_softmax_4d():
[-1.5992336e-01, -5.9647644e-01, 1.2957820e+00, -1.0650631e-01, 7.0879894e-01], [-1.5992336e-01, -5.9647644e-01, 1.2957820e+00, -1.0650631e-01, 7.0879894e-01],
[4.1372257e-01, 3.6408889e-01, -6.3091749e-01, 1.0573713e+00, 1.0981073e+00], [4.1372257e-01, 3.6408889e-01, -6.3091749e-01, 1.0573713e+00, 1.0981073e+00],
[-1.9162457e-01, 3.6392561e-05, -1.8338780e-01, 1.7549801e+00, -9.3534666e-01]]]]).astype( [-1.9162457e-01, 3.6392561e-05, -1.8338780e-01, 1.7549801e+00, -9.3534666e-01]]]]).astype(
np.float32)
np.float32)


dy = np.array([[[[2.98213929e-01, 3.10518718e+00, -1.64306939e-01, -7.33681679e-01, 5.23136854e-02], dy = np.array([[[[2.98213929e-01, 3.10518718e+00, -1.64306939e-01, -7.33681679e-01, 5.23136854e-02],
[-3.47142726e-01, -1.52662742e+00, 5.26977003e-01, 5.29672280e-02, -4.34386432e-01], [-3.47142726e-01, -1.52662742e+00, 5.26977003e-01, 5.29672280e-02, -4.34386432e-01],
@@ -142,7 +142,7 @@ def test_softmax_4d():
[4.14457440e-01, -8.74118507e-01, -4.21902031e-01, 7.87168801e-01, -1.48280108e+00], [4.14457440e-01, -8.74118507e-01, -4.21902031e-01, 7.87168801e-01, -1.48280108e+00],
[1.42688036e+00, -2.02695489e+00, 9.26816165e-01, 9.37691629e-01, 7.85577714e-01], [1.42688036e+00, -2.02695489e+00, 9.26816165e-01, 9.37691629e-01, 7.85577714e-01],
[-6.59893751e-01, 1.14681525e-02, -5.79456389e-01, -1.65206456e+00, 4.37116653e-01]]]]).astype( [-6.59893751e-01, 1.14681525e-02, -5.79456389e-01, -1.65206456e+00, 4.37116653e-01]]]]).astype(
np.float32)
np.float32)


expect_x = np.array([[[[0.21919312, 0.3903627, 0.12594244, 0.07031325, 0.19418849], expect_x = np.array([[[[0.21919312, 0.3903627, 0.12594244, 0.07031325, 0.19418849],
[0.19778392, 0.36304963, 0.16719443, 0.1646197, 0.10735231], [0.19778392, 0.36304963, 0.16719443, 0.1646197, 0.10735231],


+ 0
- 2
tests/st/ops/gpu/test_sparse_softmax_cross_entropy_with_logits_op.py View File

@@ -19,8 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function



class NetSparseSoftmaxCrossEntropyWithLogits(nn.Cell): class NetSparseSoftmaxCrossEntropyWithLogits(nn.Cell):
def __init__(self): def __init__(self):


+ 0
- 1
tests/st/ops/gpu/test_sqrt_op.py View File

@@ -17,7 +17,6 @@ import numpy as np
import pytest import pytest


import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P




+ 10
- 10
tests/st/ops/gpu/test_sub_op.py View File

@@ -76,19 +76,19 @@ def test_Sub():
output4 = sub(x4, y4) output4 = sub(x4, y4)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape)
assert output2.shape() == expect2.shape
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape)
assert output3.shape() == expect3.shape
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape)
assert output4.shape() == expect4.shape


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
sub = Net() sub = Net()
@@ -99,16 +99,16 @@ def test_Sub():
output4 = sub(x4, y4) output4 = sub(x4, y4)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape)
assert output2.shape() == expect2.shape
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape)
assert output3.shape() == expect3.shape
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape)
assert output4.shape() == expect4.shape

+ 3
- 3
tests/st/ops/gpu/test_tile_op.py View File

@@ -65,16 +65,16 @@ def test_tile():
diff0 = output[0].asnumpy() - expect0 diff0 = output[0].asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output[0].shape() == expect0.shape)
assert output[0].shape() == expect0.shape


expect1 = np.tile(input_x1, mul1) expect1 = np.tile(input_x1, mul1)
diff1 = output[1].asnumpy() - expect1 diff1 = output[1].asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output[1].shape() == expect1.shape)
assert output[1].shape() == expect1.shape


expect2 = np.tile(input_x2, mul2) expect2 = np.tile(input_x2, mul2)
diff2 = output[2].asnumpy() - expect2 diff2 = output[2].asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output[2].shape() == expect2.shape)
assert output[2].shape() == expect2.shape

+ 0
- 3
tests/st/ops/gpu/test_unsorted_segment_sum.py View File

@@ -20,9 +20,6 @@ import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common import dtype as mstype from mindspore.common import dtype as mstype
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P


context.set_context(device_target='GPU') context.set_context(device_target='GPU')


+ 4
- 7
tests/st/ops/gpu/test_zeroslike_op.py View File

@@ -19,9 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P


context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
@@ -53,14 +50,14 @@ def test_ZerosLike():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape


output1 = zeros_like(x1) output1 = zeros_like(x1)
expect1 = np.zeros_like(x1_np) expect1 = np.zeros_like(x1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape


context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
zeros_like = NetZerosLike() zeros_like = NetZerosLike()
@@ -69,11 +66,11 @@ def test_ZerosLike():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape)
assert output0.shape() == expect0.shape


output1 = zeros_like(x1) output1 = zeros_like(x1)
expect1 = np.zeros_like(x1_np) expect1 = np.zeros_like(x1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape)
assert output1.shape() == expect1.shape

Loading…
Cancel
Save