| @@ -31,6 +31,7 @@ | |||
| #include "minddata/dataset/kernels/image/mixup_batch_op.h" | |||
| #include "minddata/dataset/kernels/image/normalize_op.h" | |||
| #include "minddata/dataset/kernels/image/pad_op.h" | |||
| #include "minddata/dataset/kernels/image/random_affine_op.h" | |||
| #include "minddata/dataset/kernels/image/random_color_adjust_op.h" | |||
| #include "minddata/dataset/kernels/image/random_crop_and_resize_op.h" | |||
| #include "minddata/dataset/kernels/image/random_crop_and_resize_with_bbox_op.h" | |||
| @@ -115,6 +116,19 @@ PYBIND_REGISTER(ResizeWithBBoxOp, 1, ([](const py::module *m) { | |||
| py::arg("interpolation") = ResizeWithBBoxOp::kDefInterpolation); | |||
| })); | |||
| PYBIND_REGISTER(RandomAffineOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomAffineOp, TensorOp, std::shared_ptr<RandomAffineOp>>( | |||
| *m, "RandomAffineOp", "Tensor operation to apply random affine transformations on an image.") | |||
| .def(py::init<std::vector<float_t>, std::vector<float_t>, std::vector<float_t>, | |||
| std::vector<float_t>, InterpolationMode, std::vector<uint8_t>>(), | |||
| py::arg("degrees") = RandomAffineOp::kDegreesRange, | |||
| py::arg("translate_range") = RandomAffineOp::kTranslationPercentages, | |||
| py::arg("scale_range") = RandomAffineOp::kScaleRange, | |||
| py::arg("shear_ranges") = RandomAffineOp::kShearRanges, | |||
| py::arg("interpolation") = RandomAffineOp::kDefInterpolation, | |||
| py::arg("fill_value") = RandomAffineOp::kFillValue); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| RandomResizeWithBBoxOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomResizeWithBBoxOp, TensorOp, std::shared_ptr<RandomResizeWithBBoxOp>>( | |||
| @@ -25,6 +25,7 @@ | |||
| #include "minddata/dataset/kernels/image/normalize_op.h" | |||
| #include "minddata/dataset/kernels/data/one_hot_op.h" | |||
| #include "minddata/dataset/kernels/image/pad_op.h" | |||
| #include "minddata/dataset/kernels/image/random_affine_op.h" | |||
| #include "minddata/dataset/kernels/image/random_color_adjust_op.h" | |||
| #include "minddata/dataset/kernels/image/random_crop_op.h" | |||
| #include "minddata/dataset/kernels/image/random_horizontal_flip_op.h" | |||
| @@ -136,6 +137,22 @@ std::shared_ptr<RandomColorAdjustOperation> RandomColorAdjust(std::vector<float> | |||
| return op; | |||
| } | |||
| // Function to create RandomAffineOperation. | |||
| std::shared_ptr<RandomAffineOperation> RandomAffine(const std::vector<float_t> °rees, | |||
| const std::vector<float_t> &translate_range, | |||
| const std::vector<float_t> &scale_range, | |||
| const std::vector<float_t> &shear_ranges, | |||
| InterpolationMode interpolation, | |||
| const std::vector<uint8_t> &fill_value) { | |||
| auto op = std::make_shared<RandomAffineOperation>(degrees, translate_range, scale_range, shear_ranges, interpolation, | |||
| fill_value); | |||
| // Input validation | |||
| if (!op->ValidateParams()) { | |||
| return nullptr; | |||
| } | |||
| return op; | |||
| } | |||
| // Function to create RandomCropOperation. | |||
| std::shared_ptr<RandomCropOperation> RandomCrop(std::vector<int32_t> size, std::vector<int32_t> padding, | |||
| bool pad_if_needed, std::vector<uint8_t> fill_value) { | |||
| @@ -451,6 +468,82 @@ std::shared_ptr<TensorOp> RandomColorAdjustOperation::Build() { | |||
| return tensor_op; | |||
| } | |||
| // RandomAffineOperation | |||
| RandomAffineOperation::RandomAffineOperation(const std::vector<float_t> °rees, | |||
| const std::vector<float_t> &translate_range, | |||
| const std::vector<float_t> &scale_range, | |||
| const std::vector<float_t> &shear_ranges, InterpolationMode interpolation, | |||
| const std::vector<uint8_t> &fill_value) | |||
| : degrees_(degrees), | |||
| translate_range_(translate_range), | |||
| scale_range_(scale_range), | |||
| shear_ranges_(shear_ranges), | |||
| interpolation_(interpolation), | |||
| fill_value_(fill_value) {} | |||
| bool RandomAffineOperation::ValidateParams() { | |||
| // Degrees | |||
| if (degrees_.size() != 2) { | |||
| MS_LOG(ERROR) << "RandomAffine: degrees vector has incorrect size: degrees.size() = " << degrees_.size(); | |||
| return false; | |||
| } | |||
| if (degrees_[0] > degrees_[1]) { | |||
| MS_LOG(ERROR) << "RandomAffine: minimum of degrees range is greater than maximum: min = " << degrees_[0] | |||
| << ", max = " << degrees_[1]; | |||
| return false; | |||
| } | |||
| // Translate | |||
| if (translate_range_.size() != 2) { | |||
| MS_LOG(ERROR) << "RandomAffine: translate_range vector has incorrect size: translate_range.size() = " | |||
| << translate_range_.size(); | |||
| return false; | |||
| } | |||
| if (translate_range_[0] > translate_range_[1]) { | |||
| MS_LOG(ERROR) << "RandomAffine: minimum of translate range is greater than maximum: min = " << translate_range_[0] | |||
| << ", max = " << translate_range_[1]; | |||
| return false; | |||
| } | |||
| // Scale | |||
| if (scale_range_.size() != 2) { | |||
| MS_LOG(ERROR) << "RandomAffine: scale_range vector has incorrect size: scale_range.size() = " | |||
| << scale_range_.size(); | |||
| return false; | |||
| } | |||
| if (scale_range_[0] > scale_range_[1]) { | |||
| MS_LOG(ERROR) << "RandomAffine: minimum of scale range is greater than maximum: min = " << scale_range_[0] | |||
| << ", max = " << scale_range_[1]; | |||
| return false; | |||
| } | |||
| // Shear | |||
| if (shear_ranges_.size() != 4) { | |||
| MS_LOG(ERROR) << "RandomAffine: shear_ranges vector has incorrect size: shear_ranges.size() = " | |||
| << shear_ranges_.size(); | |||
| return false; | |||
| } | |||
| if (shear_ranges_[0] > shear_ranges_[1]) { | |||
| MS_LOG(ERROR) << "RandomAffine: minimum of horizontal shear range is greater than maximum: min = " | |||
| << shear_ranges_[0] << ", max = " << shear_ranges_[1]; | |||
| return false; | |||
| } | |||
| if (shear_ranges_[2] > shear_ranges_[3]) { | |||
| MS_LOG(ERROR) << "RandomAffine: minimum of vertical shear range is greater than maximum: min = " << shear_ranges_[2] | |||
| << ", max = " << scale_range_[3]; | |||
| return false; | |||
| } | |||
| // Fill Value | |||
| if (fill_value_.size() != 3) { | |||
| MS_LOG(ERROR) << "RandomAffine: fill_value vector has incorrect size: fill_value.size() = " << fill_value_.size(); | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| std::shared_ptr<TensorOp> RandomAffineOperation::Build() { | |||
| auto tensor_op = std::make_shared<RandomAffineOp>(degrees_, translate_range_, scale_range_, shear_ranges_, | |||
| interpolation_, fill_value_); | |||
| return tensor_op; | |||
| } | |||
| // RandomCropOperation | |||
| RandomCropOperation::RandomCropOperation(std::vector<int32_t> size, std::vector<int32_t> padding, bool pad_if_needed, | |||
| std::vector<uint8_t> fill_value) | |||
| @@ -55,6 +55,7 @@ class MixUpBatchOperation; | |||
| class NormalizeOperation; | |||
| class OneHotOperation; | |||
| class PadOperation; | |||
| class RandomAffineOperation; | |||
| class RandomColorAdjustOperation; | |||
| class RandomCropOperation; | |||
| class RandomHorizontalFlipOperation; | |||
| @@ -134,6 +135,23 @@ std::shared_ptr<OneHotOperation> OneHot(int32_t num_classes); | |||
| std::shared_ptr<PadOperation> Pad(std::vector<int32_t> padding, std::vector<uint8_t> fill_value = {0}, | |||
| BorderType padding_mode = BorderType::kConstant); | |||
| /// \brief Function to create a RandomAffine TensorOperation. | |||
| /// \notes Applies a Random Affine transformation on input image in RGB or Greyscale mode. | |||
| /// \param[in] degrees A float vector size 2, representing the starting and ending degree | |||
| /// \param[in] translate_range A float vector size 2, representing percentages of translation on x and y axes. | |||
| /// \param[in] scale_range A float vector size 2, representing the starting and ending scales in the range. | |||
| /// \param[in] shear_ranges A float vector size 4, representing the starting and ending shear degrees vertically and | |||
| /// horizontally. | |||
| /// \param[in] interpolation An enum for the mode of interpolation | |||
| /// \param[in] fill_value A uint8_t vector size 3, representing the pixel intensity of the borders, it is used to | |||
| /// fill R, G, B channels respectively. | |||
| /// \return Shared pointer to the current TensorOperation. | |||
| std::shared_ptr<RandomAffineOperation> RandomAffine( | |||
| const std::vector<float_t> °rees, const std::vector<float_t> &translate_range = {0.0, 0.0}, | |||
| const std::vector<float_t> &scale_range = {1.0, 1.0}, const std::vector<float_t> &shear_ranges = {0.0, 0.0, 0.0, 0.0}, | |||
| InterpolationMode interpolation = InterpolationMode::kNearestNeighbour, | |||
| const std::vector<uint8_t> &fill_value = {0, 0, 0}); | |||
| /// \brief Randomly adjust the brightness, contrast, saturation, and hue of the input image | |||
| /// \param[in] brightness Brightness adjustment factor. Must be a vector of one or two values | |||
| /// if it's a vector of two values it needs to be in the form of [min, max]. Default value is {1, 1} | |||
| @@ -333,6 +351,29 @@ class PadOperation : public TensorOperation { | |||
| BorderType padding_mode_; | |||
| }; | |||
| class RandomAffineOperation : public TensorOperation { | |||
| public: | |||
| RandomAffineOperation(const std::vector<float_t> °rees, const std::vector<float_t> &translate_range = {0.0, 0.0}, | |||
| const std::vector<float_t> &scale_range = {1.0, 1.0}, | |||
| const std::vector<float_t> &shear_ranges = {0.0, 0.0, 0.0, 0.0}, | |||
| InterpolationMode interpolation = InterpolationMode::kNearestNeighbour, | |||
| const std::vector<uint8_t> &fill_value = {0, 0, 0}); | |||
| ~RandomAffineOperation() = default; | |||
| std::shared_ptr<TensorOp> Build() override; | |||
| bool ValidateParams() override; | |||
| private: | |||
| std::vector<float_t> degrees_; // min_degree, max_degree | |||
| std::vector<float_t> translate_range_; // maximum x translation percentage, maximum y translation percentage | |||
| std::vector<float_t> scale_range_; // min_scale, max_scale | |||
| std::vector<float_t> shear_ranges_; // min_x_shear, max_x_shear, min_y_shear, max_y_shear | |||
| InterpolationMode interpolation_; | |||
| std::vector<uint8_t> fill_value_; | |||
| }; | |||
| class RandomColorAdjustOperation : public TensorOperation { | |||
| public: | |||
| RandomColorAdjustOperation(std::vector<float> brightness = {1.0, 1.0}, std::vector<float> contrast = {1.0, 1.0}, | |||
| @@ -1,6 +1,7 @@ | |||
| file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc") | |||
| set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD) | |||
| add_library(kernels-image OBJECT | |||
| affine_op.cc | |||
| auto_contrast_op.cc | |||
| center_crop_op.cc | |||
| crop_op.cc | |||
| @@ -10,9 +11,11 @@ add_library(kernels-image OBJECT | |||
| hwc_to_chw_op.cc | |||
| image_utils.cc | |||
| invert_op.cc | |||
| math_utils.cc | |||
| mixup_batch_op.cc | |||
| normalize_op.cc | |||
| pad_op.cc | |||
| random_affine_op.cc | |||
| random_color_adjust_op.cc | |||
| random_crop_decode_resize_op.cc | |||
| random_crop_and_resize_with_bbox_op.cc | |||
| @@ -0,0 +1,99 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <algorithm> | |||
| #include <random> | |||
| #include <utility> | |||
| #include <vector> | |||
| #include "minddata/dataset/kernels/image/affine_op.h" | |||
| #include "minddata/dataset/kernels/image/image_utils.h" | |||
| #include "minddata/dataset/kernels/image/math_utils.h" | |||
| #include "minddata/dataset/util/random.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| const InterpolationMode AffineOp::kDefInterpolation = InterpolationMode::kNearestNeighbour; | |||
| const float_t AffineOp::kDegrees = 0.0; | |||
| const std::vector<float_t> AffineOp::kTranslation = {0.0, 0.0}; | |||
| const float_t AffineOp::kScale = 1.0; | |||
| const std::vector<float_t> AffineOp::kShear = {0.0, 0.0}; | |||
| const std::vector<uint8_t> AffineOp::kFillValue = {0, 0, 0}; | |||
| AffineOp::AffineOp(float_t degrees, const std::vector<float_t> &translation, float_t scale, | |||
| const std::vector<float_t> &shear, InterpolationMode interpolation, | |||
| const std::vector<uint8_t> &fill_value) | |||
| : degrees_(degrees), | |||
| translation_(translation), | |||
| scale_(scale), | |||
| shear_(shear), | |||
| interpolation_(interpolation), | |||
| fill_value_(fill_value) {} | |||
| Status AffineOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) { | |||
| IO_CHECK(input, output); | |||
| float_t translation_x = translation_[0]; | |||
| float_t translation_y = translation_[1]; | |||
| float_t degrees = 0.0; | |||
| DegreesToRadians(degrees_, °rees); | |||
| float_t shear_x = shear_[0]; | |||
| float_t shear_y = shear_[1]; | |||
| DegreesToRadians(shear_x, &shear_x); | |||
| DegreesToRadians(-1 * shear_y, &shear_y); | |||
| std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(input); | |||
| // Apply Affine Transformation | |||
| // T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1] | |||
| // C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1] | |||
| // RSS is rotation with scale and shear matrix | |||
| // RSS(a, s, (sx, sy)) = | |||
| // = R(a) * S(s) * SHy(sy) * SHx(sx) | |||
| // = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ] | |||
| // [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ] | |||
| // [ 0 , 0 , 1 ] | |||
| // | |||
| // where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears: | |||
| // SHx(s) = [1, -tan(s)] and SHy(s) = [1 , 0] | |||
| // [0, 1 ] [-tan(s), 1] | |||
| // | |||
| // Thus, the affine matrix is M = T * C * RSS * C^-1 | |||
| float_t cx = ((input_cv->mat().cols - 1) / 2.0); | |||
| float_t cy = ((input_cv->mat().rows - 1) / 2.0); | |||
| // Calculate RSS | |||
| std::vector<float_t> matrix{scale_ * cos(degrees + shear_y) / cos(shear_y), | |||
| scale_ * (-1 * cos(degrees + shear_y) * tan(shear_x) / cos(shear_y) - sin(degrees)), | |||
| 0, | |||
| scale_ * sin(degrees + shear_y) / cos(shear_y), | |||
| scale_ * (-1 * sin(degrees + shear_y) * tan(shear_x) / cos(shear_y) + cos(degrees)), | |||
| 0}; | |||
| // Compute T * C * RSS * C^-1 | |||
| matrix[2] = (1 - matrix[0]) * cx - matrix[1] * cy + translation_x; | |||
| matrix[5] = (1 - matrix[4]) * cy - matrix[3] * cx + translation_y; | |||
| cv::Mat affine_mat(matrix); | |||
| affine_mat = affine_mat.reshape(1, {2, 3}); | |||
| std::shared_ptr<CVTensor> output_cv; | |||
| RETURN_IF_NOT_OK(CVTensor::CreateEmpty(input_cv->shape(), input_cv->type(), &output_cv)); | |||
| RETURN_UNEXPECTED_IF_NULL(output_cv); | |||
| cv::warpAffine(input_cv->mat(), output_cv->mat(), affine_mat, input_cv->mat().size(), | |||
| GetCVInterpolationMode(interpolation_), cv::BORDER_CONSTANT, | |||
| cv::Scalar(fill_value_[0], fill_value_[1], fill_value_[2])); | |||
| (*output) = std::static_pointer_cast<Tensor>(output_cv); | |||
| return Status::OK(); | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,68 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_AFFINE_OP_H_ | |||
| #define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_AFFINE_OP_H_ | |||
| #include <memory> | |||
| #include <string> | |||
| #include <vector> | |||
| #include "minddata/dataset/core/cv_tensor.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/kernels/tensor_op.h" | |||
| #include "minddata/dataset/util/status.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| class AffineOp : public TensorOp { | |||
| public: | |||
| /// Default values | |||
| static const float_t kDegrees; | |||
| static const std::vector<float_t> kTranslation; | |||
| static const float_t kScale; | |||
| static const std::vector<float_t> kShear; | |||
| static const InterpolationMode kDefInterpolation; | |||
| static const std::vector<uint8_t> kFillValue; | |||
| /// Constructor | |||
| public: | |||
| explicit AffineOp(float_t degrees, const std::vector<float_t> &translation = kTranslation, float_t scale = kScale, | |||
| const std::vector<float_t> &shear = kShear, InterpolationMode interpolation = kDefInterpolation, | |||
| const std::vector<uint8_t> &fill_value = kFillValue); | |||
| ~AffineOp() override = default; | |||
| std::string Name() const override { return kAffineOp; } | |||
| Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override; | |||
| /// Member variables | |||
| private: | |||
| std::string kAffineOp = "AffineOp"; | |||
| protected: | |||
| float_t degrees_; | |||
| std::vector<float_t> translation_; // translation_x and translation_y | |||
| float_t scale_; | |||
| std::vector<float_t> shear_; // shear_x and shear_y | |||
| InterpolationMode interpolation_; | |||
| std::vector<uint8_t> fill_value_; | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_AFFINE_OP_H_ | |||
| @@ -21,6 +21,7 @@ | |||
| #include <utility> | |||
| #include <opencv2/imgcodecs.hpp> | |||
| #include "utils/ms_utils.h" | |||
| #include "minddata/dataset/kernels/image/math_utils.h" | |||
| #include "minddata/dataset/core/constants.h" | |||
| #include "minddata/dataset/core/cv_tensor.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| @@ -631,36 +632,9 @@ Status AutoContrast(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor | |||
| hist.col(0).copyTo(hist_vec); | |||
| // Ignore values in ignore | |||
| for (const auto &item : ignore) hist_vec[item] = 0; | |||
| int32_t n = std::accumulate(hist_vec.begin(), hist_vec.end(), 0); | |||
| // Find pixel values that are in the low cutoff and high cutoff. | |||
| int32_t cut = static_cast<int32_t>((cutoff / 100.0) * n); | |||
| if (cut != 0) { | |||
| for (int32_t lo = 0; lo < 256 && cut > 0; lo++) { | |||
| if (cut > hist_vec[lo]) { | |||
| cut -= hist_vec[lo]; | |||
| hist_vec[lo] = 0; | |||
| } else { | |||
| hist_vec[lo] -= cut; | |||
| cut = 0; | |||
| } | |||
| } | |||
| cut = static_cast<int32_t>((cutoff / 100.0) * n); | |||
| for (int32_t hi = 255; hi >= 0 && cut > 0; hi--) { | |||
| if (cut > hist_vec[hi]) { | |||
| cut -= hist_vec[hi]; | |||
| hist_vec[hi] = 0; | |||
| } else { | |||
| hist_vec[hi] -= cut; | |||
| cut = 0; | |||
| } | |||
| } | |||
| } | |||
| int32_t lo = 0; | |||
| int32_t hi = 255; | |||
| for (; lo < 256 && !hist_vec[lo]; lo++) { | |||
| } | |||
| for (; hi >= 0 && !hist_vec[hi]; hi--) { | |||
| } | |||
| int32_t lo = 0; | |||
| RETURN_IF_NOT_OK(ComputeUpperAndLowerPercentiles(&hist_vec, cutoff, cutoff, &hi, &lo)); | |||
| if (hi <= lo) { | |||
| for (int32_t i = 0; i < 256; i++) { | |||
| table.push_back(i); | |||
| @@ -685,7 +659,6 @@ Status AutoContrast(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor | |||
| std::shared_ptr<CVTensor> output_cv; | |||
| RETURN_IF_NOT_OK(CVTensor::CreateFromMat(result, &output_cv)); | |||
| (*output) = std::static_pointer_cast<Tensor>(output_cv); | |||
| (*output) = std::static_pointer_cast<Tensor>(output_cv); | |||
| (*output)->Reshape(input->shape()); | |||
| } catch (const cv::Exception &e) { | |||
| RETURN_STATUS_UNEXPECTED("Error in auto contrast"); | |||
| @@ -0,0 +1,84 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "minddata/dataset/kernels/image/math_utils.h" | |||
| #include <opencv2/imgproc/types_c.h> | |||
| #include <algorithm> | |||
| #include <string> | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| Status ComputeUpperAndLowerPercentiles(std::vector<int32_t> *hist, int32_t hi_p, int32_t low_p, int32_t *hi, | |||
| int32_t *lo) { | |||
| try { | |||
| int32_t n = std::accumulate(hist->begin(), hist->end(), 0); | |||
| int32_t cut = static_cast<int32_t>((low_p / 100.0) * n); | |||
| for (int32_t lb = 0; lb < hist->size() + 1 && cut > 0; lb++) { | |||
| if (cut > (*hist)[lb]) { | |||
| cut -= (*hist)[lb]; | |||
| (*hist)[lb] = 0; | |||
| } else { | |||
| (*hist)[lb] -= cut; | |||
| cut = 0; | |||
| } | |||
| } | |||
| cut = static_cast<int32_t>((hi_p / 100.0) * n); | |||
| for (int32_t ub = hist->size() - 1; ub >= 0 && cut > 0; ub--) { | |||
| if (cut > (*hist)[ub]) { | |||
| cut -= (*hist)[ub]; | |||
| (*hist)[ub] = 0; | |||
| } else { | |||
| (*hist)[ub] -= cut; | |||
| cut = 0; | |||
| } | |||
| } | |||
| *lo = 0; | |||
| *hi = hist->size() - 1; | |||
| for (; (*lo) < (*hi) && !(*hist)[*lo]; (*lo)++) { | |||
| } | |||
| for (; (*hi) >= 0 && !(*hist)[*hi]; (*hi)--) { | |||
| } | |||
| } catch (const std::exception &e) { | |||
| const char *err_msg = e.what(); | |||
| std::string err_message = "Error in ComputeUpperAndLowerPercentiles: "; | |||
| err_message += err_msg; | |||
| RETURN_STATUS_UNEXPECTED(err_message); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status DegreesToRadians(float_t degrees, float_t *radians_target) { | |||
| *radians_target = CV_PI * degrees / 180.0; | |||
| return Status::OK(); | |||
| } | |||
| Status GenerateRealNumber(float_t a, float_t b, std::mt19937 *rnd, float_t *result) { | |||
| try { | |||
| std::uniform_real_distribution<float_t> distribution{a, b}; | |||
| *result = distribution(*rnd); | |||
| } catch (const std::exception &e) { | |||
| const char *err_msg = e.what(); | |||
| std::string err_message = "Error in GenerateRealNumber: "; | |||
| err_message += err_msg; | |||
| RETURN_STATUS_UNEXPECTED(err_message); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,50 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_MATH_UTILS_H_ | |||
| #define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_MATH_UTILS_H_ | |||
| #include <memory> | |||
| #include <random> | |||
| #include <vector> | |||
| #include "minddata/dataset/util/status.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| /// \brief Returns lower and upper pth percentiles of the input histogram. | |||
| /// \param[in] hist: Input histogram (mutates the histogram for computation purposes) | |||
| /// \param[in] hi_p: Right side percentile | |||
| /// \param[in] low_p: Left side percentile | |||
| /// \param[out] hi: Value at high end percentile | |||
| /// \param[out] lo: Value at low end percentile | |||
| Status ComputeUpperAndLowerPercentiles(std::vector<int32_t> *hist, int32_t hi_p, int32_t low_p, int32_t *hi, | |||
| int32_t *lo); | |||
| /// \brief Converts degrees input to radians. | |||
| /// \param[in] degrees: Input degrees | |||
| /// \param[out] radians_target: Radians output | |||
| Status DegreesToRadians(float_t degrees, float_t *radians_target); | |||
| /// \brief Generates a random real number in [a,b). | |||
| /// \param[in] a: Start of range | |||
| /// \param[in] b: End of range | |||
| /// \param[in] rnd: Random device | |||
| /// \param[out] result: Random number in range [a,b) | |||
| Status GenerateRealNumber(float_t a, float_t b, std::mt19937 *rnd, float_t *result); | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_MATH_UTILS_H_ | |||
| @@ -0,0 +1,77 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <algorithm> | |||
| #include <random> | |||
| #include <utility> | |||
| #include <vector> | |||
| #include "minddata/dataset/kernels/image/random_affine_op.h" | |||
| #include "minddata/dataset/kernels/image/image_utils.h" | |||
| #include "minddata/dataset/kernels/image/math_utils.h" | |||
| #include "minddata/dataset/util/random.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| const std::vector<float_t> RandomAffineOp::kDegreesRange = {0.0, 0.0}; | |||
| const std::vector<float_t> RandomAffineOp::kTranslationPercentages = {0.0, 0.0}; | |||
| const std::vector<float_t> RandomAffineOp::kScaleRange = {1.0, 1.0}; | |||
| const std::vector<float_t> RandomAffineOp::kShearRanges = {0.0, 0.0, 0.0, 0.0}; | |||
| const InterpolationMode RandomAffineOp::kDefInterpolation = InterpolationMode::kNearestNeighbour; | |||
| const std::vector<uint8_t> RandomAffineOp::kFillValue = {0, 0, 0}; | |||
| RandomAffineOp::RandomAffineOp(std::vector<float_t> degrees, std::vector<float_t> translate_range, | |||
| std::vector<float_t> scale_range, std::vector<float_t> shear_ranges, | |||
| InterpolationMode interpolation, std::vector<uint8_t> fill_value) | |||
| : AffineOp(0.0), | |||
| degrees_range_(degrees), | |||
| translate_range_(translate_range), | |||
| scale_range_(scale_range), | |||
| shear_ranges_(shear_ranges) { | |||
| interpolation_ = interpolation; | |||
| fill_value_ = fill_value; | |||
| rnd_.seed(GetSeed()); | |||
| } | |||
| Status RandomAffineOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) { | |||
| IO_CHECK(input, output); | |||
| dsize_t height = input->shape()[0]; | |||
| dsize_t width = input->shape()[1]; | |||
| float_t max_dx = translate_range_[0] * height; | |||
| float_t max_dy = translate_range_[1] * width; | |||
| float_t degrees = 0.0; | |||
| RETURN_IF_NOT_OK(GenerateRealNumber(degrees_range_[0], degrees_range_[1], &rnd_, °rees)); | |||
| float_t translation_x = 0.0; | |||
| RETURN_IF_NOT_OK(GenerateRealNumber(-1 * max_dx, max_dx, &rnd_, &translation_x)); | |||
| float_t translation_y = 0.0; | |||
| RETURN_IF_NOT_OK(GenerateRealNumber(-1 * max_dy, max_dy, &rnd_, &translation_y)); | |||
| float_t scale = 1.0; | |||
| RETURN_IF_NOT_OK(GenerateRealNumber(scale_range_[0], scale_range_[1], &rnd_, &scale)); | |||
| float_t shear_x = 0.0; | |||
| RETURN_IF_NOT_OK(GenerateRealNumber(shear_ranges_[0], shear_ranges_[1], &rnd_, &shear_x)); | |||
| float_t shear_y = 0.0; | |||
| RETURN_IF_NOT_OK(GenerateRealNumber(shear_ranges_[2], shear_ranges_[3], &rnd_, &shear_y)); | |||
| // assign to base class variables | |||
| degrees_ = degrees; | |||
| scale_ = scale; | |||
| translation_[0] = translation_x; | |||
| translation_[1] = translation_y; | |||
| shear_[0] = shear_x; | |||
| shear_[1] = shear_y; | |||
| return AffineOp::Compute(input, output); | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,64 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_RANDOM_AFFINE_OP_H_ | |||
| #define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_RANDOM_AFFINE_OP_H_ | |||
| #include <memory> | |||
| #include <string> | |||
| #include <vector> | |||
| #include "minddata/dataset/core/cv_tensor.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/kernels/image/affine_op.h" | |||
| #include "minddata/dataset/util/status.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| class RandomAffineOp : public AffineOp { | |||
| public: | |||
| /// Default values, also used by python_bindings.cc | |||
| static const std::vector<float_t> kDegreesRange; | |||
| static const std::vector<float_t> kTranslationPercentages; | |||
| static const std::vector<float_t> kScaleRange; | |||
| static const std::vector<float_t> kShearRanges; | |||
| static const InterpolationMode kDefInterpolation; | |||
| static const std::vector<uint8_t> kFillValue; | |||
| explicit RandomAffineOp(std::vector<float_t> degrees, std::vector<float_t> translate_range = kTranslationPercentages, | |||
| std::vector<float_t> scale_range = kScaleRange, | |||
| std::vector<float_t> shear_ranges = kShearRanges, | |||
| InterpolationMode interpolation = kDefInterpolation, | |||
| std::vector<uint8_t> fill_value = kFillValue); | |||
| ~RandomAffineOp() override = default; | |||
| std::string Name() const override { return kRandomAffineOp; } | |||
| Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override; | |||
| private: | |||
| std::string kRandomAffineOp = "RandomAffineOp"; | |||
| std::vector<float_t> degrees_range_; // min_degree, max_degree | |||
| std::vector<float_t> translate_range_; // maximum x translation percentage, maximum y translation percentage | |||
| std::vector<float_t> scale_range_; // min_scale, max_scale | |||
| std::vector<float_t> shear_ranges_; // min_x_shear, max_x_shear, min_y_shear, max_y_shear | |||
| std::mt19937 rnd_; // random device | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_RANDOM_AFFINE_OP_H_ | |||
| @@ -47,7 +47,8 @@ from .utils import Inter, Border | |||
| from .validators import check_prob, check_crop, check_resize_interpolation, check_random_resize_crop, \ | |||
| check_mix_up_batch_c, check_normalize_c, check_random_crop, check_random_color_adjust, check_random_rotation, \ | |||
| check_range, check_resize, check_rescale, check_pad, check_cutout, check_uniform_augment_cpp, \ | |||
| check_bounding_box_augment_cpp, check_random_select_subpolicy_op, check_auto_contrast, FLOAT_MAX_INTEGER | |||
| check_bounding_box_augment_cpp, check_random_select_subpolicy_op, check_auto_contrast, check_random_affine, \ | |||
| FLOAT_MAX_INTEGER | |||
| DE_C_INTER_MODE = {Inter.NEAREST: cde.InterpolationMode.DE_INTER_NEAREST_NEIGHBOUR, | |||
| Inter.LINEAR: cde.InterpolationMode.DE_INTER_LINEAR, | |||
| @@ -170,6 +171,95 @@ class Normalize(cde.NormalizeOp): | |||
| super().__init__(*mean, *std) | |||
| class RandomAffine(cde.RandomAffineOp): | |||
| """ | |||
| Apply Random affine transformation to the input PIL image. | |||
| Args: | |||
| degrees (int or float or sequence): Range of the rotation degrees. | |||
| If degrees is a number, the range will be (-degrees, degrees). | |||
| If degrees is a sequence, it should be (min, max). | |||
| translate (sequence, optional): Sequence (tx, ty) of maximum translation in | |||
| x(horizontal) and y(vertical) directions (default=None). | |||
| The horizontal and vertical shift is selected randomly from the range: | |||
| (-tx*width, tx*width) and (-ty*height, ty*height), respectively. | |||
| If None, no translations gets applied. | |||
| scale (sequence, optional): Scaling factor interval (default=None, original scale is used). | |||
| shear (int or float or sequence, optional): Range of shear factor (default=None). | |||
| If a number 'shear', then a shear parallel to the x axis in the range of (-shear, +shear) is applied. | |||
| If a tuple or list of size 2, then a shear parallel to the x axis in the range of (shear[0], shear[1]) | |||
| is applied. | |||
| If a tuple of list of size 4, then a shear parallel to x axis in the range of (shear[0], shear[1]) | |||
| and a shear parallel to y axis in the range of (shear[2], shear[3]) is applied. | |||
| If None, no shear is applied. | |||
| resample (Inter mode, optional): An optional resampling filter (default=Inter.NEAREST). | |||
| If omitted, or if the image has mode "1" or "P", it is set to be Inter.NEAREST. | |||
| It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC]. | |||
| - Inter.BILINEAR, means resample method is bilinear interpolation. | |||
| - Inter.NEAREST, means resample method is nearest-neighbor interpolation. | |||
| - Inter.BICUBIC, means resample method is bicubic interpolation. | |||
| fill_value (tuple or int, optional): Optional fill_value to fill the area outside the transform | |||
| in the output image. Used only in Pillow versions > 5.0.0 (default=0, filling is performed). | |||
| Raises: | |||
| ValueError: If degrees is negative. | |||
| ValueError: If translation value is not between 0 and 1. | |||
| ValueError: If scale is not positive. | |||
| ValueError: If shear is a number but is not positive. | |||
| TypeError: If degrees is not a number or a list or a tuple. | |||
| If degrees is a list or tuple, its length is not 2. | |||
| TypeError: If translate is specified but is not list or a tuple of length 2. | |||
| TypeError: If scale is not a list or tuple of length 2.'' | |||
| TypeError: If shear is not a list or tuple of length 2 or 4. | |||
| Examples: | |||
| >>> c_transform.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1)) | |||
| """ | |||
| @check_random_affine | |||
| def __init__(self, degrees, translate=None, scale=None, shear=None, resample=Inter.NEAREST, fill_value=0): | |||
| # Parameter checking | |||
| if shear is not None: | |||
| if isinstance(shear, numbers.Number): | |||
| shear = (-1 * shear, shear, 0., 0.) | |||
| else: | |||
| if len(shear) == 2: | |||
| shear = [shear[0], shear[1], 0., 0.] | |||
| elif len(shear) == 4: | |||
| shear = [s for s in shear] | |||
| if isinstance(degrees, numbers.Number): | |||
| degrees = (-1 * degrees, degrees) | |||
| if isinstance(fill_value, numbers.Number): | |||
| fill_value = (fill_value, fill_value, fill_value) | |||
| # translation | |||
| if translate is None: | |||
| translate = (0.0, 0.0) | |||
| # scale | |||
| if scale is None: | |||
| scale = (1.0, 1.0) | |||
| # shear | |||
| if shear is None: | |||
| shear = (0.0, 0.0, 0.0, 0.0) | |||
| self.degrees = degrees | |||
| self.translate = translate | |||
| self.scale_ = scale | |||
| self.shear = shear | |||
| self.resample = DE_C_INTER_MODE[resample] | |||
| self.fill_value = fill_value | |||
| super().__init__(degrees, translate, scale, shear, DE_C_INTER_MODE[resample], fill_value) | |||
| class RandomCrop(cde.RandomCropOp): | |||
| """ | |||
| Crop the input image at a random location. | |||
| @@ -4,6 +4,7 @@ SET(DE_UT_SRCS | |||
| common/common.cc | |||
| common/cvop_common.cc | |||
| common/bboxop_common.cc | |||
| auto_contrast_op_test.cc | |||
| batch_op_test.cc | |||
| bit_functions_test.cc | |||
| storage_container_test.cc | |||
| @@ -22,6 +23,7 @@ SET(DE_UT_SRCS | |||
| cut_out_op_test.cc | |||
| datatype_test.cc | |||
| decode_op_test.cc | |||
| equalize_op_test.cc | |||
| execution_tree_test.cc | |||
| global_context_test.cc | |||
| main_test.cc | |||
| @@ -36,6 +38,7 @@ SET(DE_UT_SRCS | |||
| path_test.cc | |||
| project_op_test.cc | |||
| queue_test.cc | |||
| random_affine_op_test.cc | |||
| random_crop_op_test.cc | |||
| random_crop_with_bbox_op_test.cc | |||
| random_crop_decode_resize_op_test.cc | |||
| @@ -0,0 +1,41 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "common/common.h" | |||
| #include "common/cvop_common.h" | |||
| #include "minddata/dataset/kernels/image/auto_contrast_op.h" | |||
| #include "minddata/dataset/core/cv_tensor.h" | |||
| #include "utils/log_adapter.h" | |||
| using namespace mindspore::dataset; | |||
| using mindspore::LogStream; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::MsLogLevel::INFO; | |||
| class MindDataTestAutoContrastOp : public UT::CVOP::CVOpCommon { | |||
| public: | |||
| MindDataTestAutoContrastOp() : CVOpCommon() {} | |||
| }; | |||
| TEST_F(MindDataTestAutoContrastOp, TestOp1) { | |||
| MS_LOG(INFO) << "Doing testAutoContrastOp."; | |||
| std::shared_ptr<Tensor> output_tensor; | |||
| std::unique_ptr<AutoContrastOp> op(new AutoContrastOp(1.0, {0, 255})); | |||
| EXPECT_TRUE(op->OneToOne()); | |||
| Status s = op->Compute(input_tensor_, &output_tensor); | |||
| EXPECT_TRUE(s.IsOk()); | |||
| CheckImageShapeAndData(output_tensor, kAutoContrast); | |||
| } | |||
| @@ -521,6 +521,119 @@ TEST_F(MindDataTestPipeline, TestRandomColorAdjust) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestRandomAffineSuccess1) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess1 with non-default params."; | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Repeat operation on ds | |||
| int32_t repeat_num = 2; | |||
| ds = ds->Repeat(repeat_num); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> affine = | |||
| vision::RandomAffine({30.0, 30.0}, {0.0, 0.0}, {2.0, 2.0}, {10.0, 10.0, 20.0, 20.0}); | |||
| EXPECT_NE(affine, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({affine}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 1; | |||
| ds = ds->Batch(batch_size); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // This will trigger the creation of the Execution Tree and launch it. | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| EXPECT_NE(iter, nullptr); | |||
| // Iterate the dataset and get each row | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(i, 20); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestRandomAffineSuccess2) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineSuccess2 with default params."; | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Repeat operation on ds | |||
| int32_t repeat_num = 2; | |||
| ds = ds->Repeat(repeat_num); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> affine = vision::RandomAffine({0.0, 0.0}); | |||
| EXPECT_NE(affine, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({affine}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 1; | |||
| ds = ds->Batch(batch_size); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // This will trigger the creation of the Execution Tree and launch it. | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| EXPECT_NE(iter, nullptr); | |||
| // Iterate the dataset and get each row | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(i, 20); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestRandomAffineFail) { | |||
| MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRandomAffineFail with invalid params."; | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> affine = vision::RandomAffine({0.0, 0.0}, {}); | |||
| EXPECT_EQ(affine, nullptr); | |||
| // Invalid number of values for translate | |||
| affine = vision::RandomAffine({0.0, 0.0}, {1, 1, 1, 1}); | |||
| EXPECT_EQ(affine, nullptr); | |||
| // Invalid number of values for shear | |||
| affine = vision::RandomAffine({30.0, 30.0}, {0.0, 0.0}, {2.0, 2.0}, {10.0, 10.0}); | |||
| EXPECT_EQ(affine, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestRandomRotation) { | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| @@ -130,6 +130,18 @@ void CVOpCommon::CheckImageShapeAndData(const std::shared_ptr<Tensor> &output_te | |||
| expect_image_path = dir_path + "imagefolder/apple_expect_changemode.jpg"; | |||
| actual_image_path = dir_path + "imagefolder/apple_actual_changemode.jpg"; | |||
| break; | |||
| case kRandomAffine: | |||
| expect_image_path = dir_path + "imagefolder/apple_expect_randomaffine.jpg"; | |||
| actual_image_path = dir_path + "imagefolder/apple_actual_randomaffine.jpg"; | |||
| break; | |||
| case kAutoContrast: | |||
| expect_image_path = dir_path + "imagefolder/apple_expect_autocontrast.jpg"; | |||
| actual_image_path = dir_path + "imagefolder/apple_actual_autocontrast.jpg"; | |||
| break; | |||
| case kEqualize: | |||
| expect_image_path = dir_path + "imagefolder/apple_expect_equalize.jpg"; | |||
| actual_image_path = dir_path + "imagefolder/apple_actual_equalize.jpg"; | |||
| break; | |||
| default: | |||
| MS_LOG(INFO) << "Not pass verification! Operation type does not exists."; | |||
| EXPECT_EQ(0, 1); | |||
| @@ -37,7 +37,10 @@ class CVOpCommon : public Common { | |||
| kChannelSwap, | |||
| kChangeMode, | |||
| kTemplate, | |||
| kCrop | |||
| kCrop, | |||
| kRandomAffine, | |||
| kAutoContrast, | |||
| kEqualize | |||
| }; | |||
| CVOpCommon(); | |||
| @@ -0,0 +1,41 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "common/common.h" | |||
| #include "common/cvop_common.h" | |||
| #include "minddata/dataset/kernels/image/equalize_op.h" | |||
| #include "minddata/dataset/core/cv_tensor.h" | |||
| #include "utils/log_adapter.h" | |||
| using namespace mindspore::dataset; | |||
| using mindspore::LogStream; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::MsLogLevel::INFO; | |||
| class MindDataTestEqualizeOp : public UT::CVOP::CVOpCommon { | |||
| public: | |||
| MindDataTestEqualizeOp() : CVOpCommon() {} | |||
| }; | |||
| TEST_F(MindDataTestEqualizeOp, TestOp1) { | |||
| MS_LOG(INFO) << "Doing testEqualizeOp."; | |||
| std::shared_ptr<Tensor> output_tensor; | |||
| std::unique_ptr<EqualizeOp> op(new EqualizeOp()); | |||
| EXPECT_TRUE(op->OneToOne()); | |||
| Status s = op->Compute(input_tensor_, &output_tensor); | |||
| EXPECT_TRUE(s.IsOk()); | |||
| CheckImageShapeAndData(output_tensor, kEqualize); | |||
| } | |||
| @@ -0,0 +1,42 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "common/common.h" | |||
| #include "common/cvop_common.h" | |||
| #include "minddata/dataset/kernels/image/random_affine_op.h" | |||
| #include "minddata/dataset/core/cv_tensor.h" | |||
| #include "utils/log_adapter.h" | |||
| using namespace mindspore::dataset; | |||
| using mindspore::LogStream; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::MsLogLevel::INFO; | |||
| class MindDataTestRandomAffineOp : public UT::CVOP::CVOpCommon { | |||
| public: | |||
| MindDataTestRandomAffineOp() : CVOpCommon() {} | |||
| }; | |||
| TEST_F(MindDataTestRandomAffineOp, TestOp1) { | |||
| MS_LOG(INFO) << "Doing testRandomAffineOp."; | |||
| std::shared_ptr<Tensor> output_tensor; | |||
| std::unique_ptr<RandomAffineOp> op(new RandomAffineOp({30.0, 30.0}, {0.0, 0.0}, {2.0, 2.0}, {10.0, 10.0, 20.0, 20.0}, | |||
| InterpolationMode::kNearestNeighbour, {255, 0, 0})); | |||
| EXPECT_TRUE(op->OneToOne()); | |||
| Status s = op->Compute(input_tensor_, &output_tensor); | |||
| EXPECT_TRUE(s.IsOk()); | |||
| CheckImageShapeAndData(output_tensor, kRandomAffine); | |||
| } | |||
| @@ -20,9 +20,10 @@ import mindspore.dataset.engine as de | |||
| import mindspore.dataset.transforms.vision.py_transforms as F | |||
| import mindspore.dataset.transforms.vision.c_transforms as C | |||
| from mindspore import log as logger | |||
| from util import visualize_list, diff_mse, save_and_check_md5 | |||
| from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5 | |||
| DATA_DIR = "../data/dataset/testImageNetData/train/" | |||
| MNIST_DATA_DIR = "../data/dataset/testMnistData" | |||
| GENERATE_GOLDEN = False | |||
| @@ -81,7 +82,7 @@ def test_auto_contrast_py(plot=False): | |||
| logger.info("MSE= {}".format(str(np.mean(mse)))) | |||
| # Compare with expected md5 from images | |||
| filename = "autcontrast_01_result_py.npz" | |||
| filename = "autocontrast_01_result_py.npz" | |||
| save_and_check_md5(ds_auto_contrast, filename, generate_golden=GENERATE_GOLDEN) | |||
| if plot: | |||
| @@ -144,7 +145,7 @@ def test_auto_contrast_c(plot=False): | |||
| np.testing.assert_equal(np.mean(mse), 0.0) | |||
| # Compare with expected md5 from images | |||
| filename = "autcontrast_01_result_c.npz" | |||
| filename = "autocontrast_01_result_c.npz" | |||
| save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN) | |||
| if plot: | |||
| @@ -213,6 +214,34 @@ def test_auto_contrast_one_channel_c(plot=False): | |||
| visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2) | |||
| def test_auto_contrast_mnist_c(plot=False): | |||
| """ | |||
| Test AutoContrast C op with MNIST dataset (Grayscale images) | |||
| """ | |||
| logger.info("Test AutoContrast C Op With MNIST Images") | |||
| ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False) | |||
| ds_auto_contrast_c = ds.map(input_columns="image", | |||
| operations=C.AutoContrast(cutoff=1, ignore=(0, 255))) | |||
| ds_orig = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False) | |||
| images = [] | |||
| images_trans = [] | |||
| labels = [] | |||
| for _, (data_orig, data_trans) in enumerate(zip(ds_orig, ds_auto_contrast_c)): | |||
| image_orig, label_orig = data_orig | |||
| image_trans, _ = data_trans | |||
| images.append(image_orig) | |||
| labels.append(label_orig) | |||
| images_trans.append(image_trans) | |||
| # Compare with expected md5 from images | |||
| filename = "autocontrast_mnist_result_c.npz" | |||
| save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN) | |||
| if plot: | |||
| visualize_one_channel_dataset(images, images_trans, labels) | |||
| def test_auto_contrast_invalid_ignore_param_c(): | |||
| """ | |||
| Test AutoContrast C Op with invalid ignore parameter | |||
| @@ -333,6 +362,7 @@ if __name__ == "__main__": | |||
| test_auto_contrast_py(plot=True) | |||
| test_auto_contrast_c(plot=True) | |||
| test_auto_contrast_one_channel_c(plot=True) | |||
| test_auto_contrast_mnist_c(plot=True) | |||
| test_auto_contrast_invalid_ignore_param_c() | |||
| test_auto_contrast_invalid_ignore_param_py() | |||
| test_auto_contrast_invalid_cutoff_param_c() | |||
| @@ -21,12 +21,14 @@ import mindspore.dataset.engine as de | |||
| import mindspore.dataset.transforms.vision.c_transforms as C | |||
| import mindspore.dataset.transforms.vision.py_transforms as F | |||
| from mindspore import log as logger | |||
| from util import visualize_list, diff_mse, save_and_check_md5 | |||
| from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5 | |||
| DATA_DIR = "../data/dataset/testImageNetData/train/" | |||
| MNIST_DATA_DIR = "../data/dataset/testMnistData" | |||
| GENERATE_GOLDEN = False | |||
| def test_equalize_py(plot=False): | |||
| """ | |||
| Test Equalize py op | |||
| @@ -216,6 +218,34 @@ def test_equalize_one_channel(): | |||
| assert "The shape" in str(e) | |||
| def test_equalize_mnist_c(plot=False): | |||
| """ | |||
| Test Equalize C op with MNIST dataset (Grayscale images) | |||
| """ | |||
| logger.info("Test Equalize C Op With MNIST Images") | |||
| ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False) | |||
| ds_equalize_c = ds.map(input_columns="image", | |||
| operations=C.Equalize()) | |||
| ds_orig = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False) | |||
| images = [] | |||
| images_trans = [] | |||
| labels = [] | |||
| for _, (data_orig, data_trans) in enumerate(zip(ds_orig, ds_equalize_c)): | |||
| image_orig, label_orig = data_orig | |||
| image_trans, _ = data_trans | |||
| images.append(image_orig) | |||
| labels.append(label_orig) | |||
| images_trans.append(image_trans) | |||
| # Compare with expected md5 from images | |||
| filename = "equalize_mnist_result_c.npz" | |||
| save_and_check_md5(ds_equalize_c, filename, generate_golden=GENERATE_GOLDEN) | |||
| if plot: | |||
| visualize_one_channel_dataset(images, images_trans, labels) | |||
| def test_equalize_md5_py(): | |||
| """ | |||
| Test Equalize py op with md5 check | |||
| @@ -258,7 +288,7 @@ if __name__ == "__main__": | |||
| test_equalize_py(plot=False) | |||
| test_equalize_c(plot=False) | |||
| test_equalize_py_c(plot=False) | |||
| test_equalize_mnist_c(plot=True) | |||
| test_equalize_one_channel() | |||
| test_equalize_md5_py() | |||
| test_equalize_md5_c() | |||
| @@ -18,6 +18,7 @@ Testing RandomAffine op in DE | |||
| import numpy as np | |||
| import mindspore.dataset as ds | |||
| import mindspore.dataset.transforms.vision.py_transforms as py_vision | |||
| import mindspore.dataset.transforms.vision.c_transforms as c_vision | |||
| from mindspore import log as logger | |||
| from util import visualize_list, save_and_check_md5, \ | |||
| config_get_set_seed, config_get_set_num_parallel_workers | |||
| @@ -65,6 +66,39 @@ def test_random_affine_op(plot=False): | |||
| visualize_list(image_original, image_affine) | |||
| def test_random_affine_op_c(plot=False): | |||
| """ | |||
| Test RandomAffine in C transformations | |||
| """ | |||
| logger.info("test_random_affine_op_c") | |||
| # define map operations | |||
| transforms1 = [ | |||
| c_vision.Decode(), | |||
| c_vision.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1)) | |||
| ] | |||
| transforms2 = [ | |||
| c_vision.Decode() | |||
| ] | |||
| # First dataset | |||
| data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||
| data1 = data1.map(input_columns=["image"], operations=transforms1) | |||
| # Second dataset | |||
| data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||
| data2 = data2.map(input_columns=["image"], operations=transforms2) | |||
| image_affine = [] | |||
| image_original = [] | |||
| for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): | |||
| image1 = item1["image"] | |||
| image2 = item2["image"] | |||
| image_affine.append(image1) | |||
| image_original.append(image2) | |||
| if plot: | |||
| visualize_list(image_original, image_affine) | |||
| def test_random_affine_md5(): | |||
| """ | |||
| Test RandomAffine with md5 comparison | |||
| @@ -94,6 +128,33 @@ def test_random_affine_md5(): | |||
| ds.config.set_num_parallel_workers((original_num_parallel_workers)) | |||
| def test_random_affine_c_md5(): | |||
| """ | |||
| Test RandomAffine C Op with md5 comparison | |||
| """ | |||
| logger.info("test_random_affine_c_md5") | |||
| original_seed = config_get_set_seed(1) | |||
| original_num_parallel_workers = config_get_set_num_parallel_workers(1) | |||
| # define map operations | |||
| transforms = [ | |||
| c_vision.Decode(), | |||
| c_vision.RandomAffine(degrees=(-5, 15), translate=(0.1, 0.3), | |||
| scale=(0.9, 1.1), shear=(-10, 10, -5, 5)) | |||
| ] | |||
| # Generate dataset | |||
| data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||
| data = data.map(input_columns=["image"], operations=transforms) | |||
| # check results with md5 comparison | |||
| filename = "random_affine_01_c_result.npz" | |||
| save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) | |||
| # Restore configuration | |||
| ds.config.set_seed(original_seed) | |||
| ds.config.set_num_parallel_workers((original_num_parallel_workers)) | |||
| def test_random_affine_exception_negative_degrees(): | |||
| """ | |||
| Test RandomAffine: input degrees in negative, expected to raise ValueError | |||
| @@ -199,7 +260,9 @@ def test_random_affine_exception_shear_size(): | |||
| if __name__ == "__main__": | |||
| test_random_affine_op(plot=True) | |||
| test_random_affine_op_c(plot=True) | |||
| test_random_affine_md5() | |||
| test_random_affine_c_md5() | |||
| test_random_affine_exception_negative_degrees() | |||
| test_random_affine_exception_translation_range() | |||
| test_random_affine_exception_scale_value() | |||
| @@ -200,6 +200,23 @@ def diff_me(in1, in2): | |||
| return mse / 255 * 100 | |||
| def visualize_one_channel_dataset(images_original, images_transformed, labels): | |||
| """ | |||
| Helper function to visualize one channel grayscale images | |||
| """ | |||
| num_samples = len(images_original) | |||
| for i in range(num_samples): | |||
| plt.subplot(2, num_samples, i + 1) | |||
| # Note: Use squeeze() to convert (H, W, 1) images to (H, W) | |||
| plt.imshow(images_original[i].squeeze(), cmap=plt.cm.gray) | |||
| plt.title(PLOT_TITLE_DICT[1][0] + ":" + str(labels[i])) | |||
| plt.subplot(2, num_samples, i + num_samples + 1) | |||
| plt.imshow(images_transformed[i].squeeze(), cmap=plt.cm.gray) | |||
| plt.title(PLOT_TITLE_DICT[1][1] + ":" + str(labels[i])) | |||
| plt.show() | |||
| def visualize_list(image_list_1, image_list_2, visualize_mode=1): | |||
| """ | |||
| visualizes a list of images using DE op | |||