Merge pull request !3979 from MahdiRahmaniHanzaki/mixuptags/v0.7.0-beta
| @@ -28,6 +28,7 @@ | |||
| #include "minddata/dataset/kernels/image/hwc_to_chw_op.h" | |||
| #include "minddata/dataset/kernels/image/image_utils.h" | |||
| #include "minddata/dataset/kernels/image/invert_op.h" | |||
| #include "minddata/dataset/kernels/image/mixup_batch_op.h" | |||
| #include "minddata/dataset/kernels/image/normalize_op.h" | |||
| #include "minddata/dataset/kernels/image/pad_op.h" | |||
| #include "minddata/dataset/kernels/image/random_color_adjust_op.h" | |||
| @@ -92,6 +93,12 @@ PYBIND_REGISTER(CenterCropOp, 1, ([](const py::module *m) { | |||
| .def(py::init<int32_t, int32_t>(), py::arg("height"), py::arg("width") = CenterCropOp::kDefWidth); | |||
| })); | |||
| PYBIND_REGISTER(MixUpBatchOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<MixUpBatchOp, TensorOp, std::shared_ptr<MixUpBatchOp>>( | |||
| *m, "MixUpBatchOp", "Tensor operation to mixup a batch of images") | |||
| .def(py::init<float>(), py::arg("alpha")); | |||
| })); | |||
| PYBIND_REGISTER(ResizeOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<ResizeOp, TensorOp, std::shared_ptr<ResizeOp>>( | |||
| *m, "ResizeOp", "Tensor operation to resize an image. Takes height, width and mode") | |||
| @@ -21,7 +21,9 @@ | |||
| #include "minddata/dataset/kernels/image/crop_op.h" | |||
| #include "minddata/dataset/kernels/image/cut_out_op.h" | |||
| #include "minddata/dataset/kernels/image/decode_op.h" | |||
| #include "minddata/dataset/kernels/image/mixup_batch_op.h" | |||
| #include "minddata/dataset/kernels/image/normalize_op.h" | |||
| #include "minddata/dataset/kernels/data/one_hot_op.h" | |||
| #include "minddata/dataset/kernels/image/pad_op.h" | |||
| #include "minddata/dataset/kernels/image/random_color_adjust_op.h" | |||
| #include "minddata/dataset/kernels/image/random_crop_op.h" | |||
| @@ -81,6 +83,16 @@ std::shared_ptr<DecodeOperation> Decode(bool rgb) { | |||
| return op; | |||
| } | |||
| // Function to create MixUpBatchOperation. | |||
| std::shared_ptr<MixUpBatchOperation> MixUpBatch(float alpha) { | |||
| auto op = std::make_shared<MixUpBatchOperation>(alpha); | |||
| // Input validation | |||
| if (!op->ValidateParams()) { | |||
| return nullptr; | |||
| } | |||
| return op; | |||
| } | |||
| // Function to create NormalizeOperation. | |||
| std::shared_ptr<NormalizeOperation> Normalize(std::vector<float> mean, std::vector<float> std) { | |||
| auto op = std::make_shared<NormalizeOperation>(mean, std); | |||
| @@ -91,6 +103,16 @@ std::shared_ptr<NormalizeOperation> Normalize(std::vector<float> mean, std::vect | |||
| return op; | |||
| } | |||
| // Function to create OneHotOperation. | |||
| std::shared_ptr<OneHotOperation> OneHot(int32_t num_classes) { | |||
| auto op = std::make_shared<OneHotOperation>(num_classes); | |||
| // Input validation | |||
| if (!op->ValidateParams()) { | |||
| return nullptr; | |||
| } | |||
| return op; | |||
| } | |||
| // Function to create PadOperation. | |||
| std::shared_ptr<PadOperation> Pad(std::vector<int32_t> padding, std::vector<uint8_t> fill_value, | |||
| BorderType padding_mode) { | |||
| @@ -271,6 +293,20 @@ bool DecodeOperation::ValidateParams() { return true; } | |||
| std::shared_ptr<TensorOp> DecodeOperation::Build() { return std::make_shared<DecodeOp>(rgb_); } | |||
| // MixUpOperation | |||
| MixUpBatchOperation::MixUpBatchOperation(float alpha) : alpha_(alpha) {} | |||
| bool MixUpBatchOperation::ValidateParams() { | |||
| if (alpha_ < 0) { | |||
| MS_LOG(ERROR) << "MixUpBatch: alpha must be a positive floating value however it is: " << alpha_; | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| std::shared_ptr<TensorOp> MixUpBatchOperation::Build() { return std::make_shared<MixUpBatchOp>(alpha_); } | |||
| // NormalizeOperation | |||
| NormalizeOperation::NormalizeOperation(std::vector<float> mean, std::vector<float> std) : mean_(mean), std_(std) {} | |||
| @@ -292,6 +328,20 @@ std::shared_ptr<TensorOp> NormalizeOperation::Build() { | |||
| return std::make_shared<NormalizeOp>(mean_[0], mean_[1], mean_[2], std_[0], std_[1], std_[2]); | |||
| } | |||
| // OneHotOperation | |||
| OneHotOperation::OneHotOperation(int32_t num_classes) : num_classes_(num_classes) {} | |||
| bool OneHotOperation::ValidateParams() { | |||
| if (num_classes_ < 0) { | |||
| MS_LOG(ERROR) << "OneHot: Number of classes cannot be negative. Number of classes: " << num_classes_; | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| std::shared_ptr<TensorOp> OneHotOperation::Build() { return std::make_shared<OneHotOp>(num_classes_); } | |||
| // PadOperation | |||
| PadOperation::PadOperation(std::vector<int32_t> padding, std::vector<uint8_t> fill_value, BorderType padding_mode) | |||
| : padding_(padding), fill_value_(fill_value), padding_mode_(padding_mode) {} | |||
| @@ -51,7 +51,9 @@ class CenterCropOperation; | |||
| class CropOperation; | |||
| class CutOutOperation; | |||
| class DecodeOperation; | |||
| class MixUpBatchOperation; | |||
| class NormalizeOperation; | |||
| class OneHotOperation; | |||
| class PadOperation; | |||
| class RandomColorAdjustOperation; | |||
| class RandomCropOperation; | |||
| @@ -90,6 +92,13 @@ std::shared_ptr<CutOutOperation> CutOut(int32_t length, int32_t num_patches = 1) | |||
| /// \return Shared pointer to the current TensorOperation. | |||
| std::shared_ptr<DecodeOperation> Decode(bool rgb = true); | |||
| /// \brief Function to create a MixUpBatch TensorOperation. | |||
| /// \notes Apply MixUp transformation on an input batch of images and labels. The labels must be in one-hot format and | |||
| /// Batch must be called before calling this function. | |||
| /// \param[in] alpha hyperparameter of beta distribution (default = 1.0) | |||
| /// \return Shared pointer to the current TensorOperation. | |||
| std::shared_ptr<MixUpBatchOperation> MixUpBatch(float alpha = 1); | |||
| /// \brief Function to create a Normalize TensorOperation. | |||
| /// \notes Normalize the input image with respect to mean and standard deviation. | |||
| /// \param[in] mean - a vector of mean values for each channel, w.r.t channel order. | |||
| @@ -97,6 +106,12 @@ std::shared_ptr<DecodeOperation> Decode(bool rgb = true); | |||
| /// \return Shared pointer to the current TensorOperation. | |||
| std::shared_ptr<NormalizeOperation> Normalize(std::vector<float> mean, std::vector<float> std); | |||
| /// \brief Function to create a OneHot TensorOperation. | |||
| /// \notes Convert the labels into OneHot format. | |||
| /// \param[in] num_classes number of classes. | |||
| /// \return Shared pointer to the current TensorOperation. | |||
| std::shared_ptr<OneHotOperation> OneHot(int32_t num_classes); | |||
| /// \brief Function to create a Pad TensorOp | |||
| /// \notes Pads the image according to padding parameters | |||
| /// \param[in] padding A vector representing the number of pixels to pad the image | |||
| @@ -258,6 +273,20 @@ class DecodeOperation : public TensorOperation { | |||
| bool rgb_; | |||
| }; | |||
| class MixUpBatchOperation : public TensorOperation { | |||
| public: | |||
| explicit MixUpBatchOperation(float alpha = 1); | |||
| ~MixUpBatchOperation() = default; | |||
| std::shared_ptr<TensorOp> Build() override; | |||
| bool ValidateParams() override; | |||
| private: | |||
| float alpha_; | |||
| }; | |||
| class NormalizeOperation : public TensorOperation { | |||
| public: | |||
| NormalizeOperation(std::vector<float> mean, std::vector<float> std); | |||
| @@ -273,6 +302,20 @@ class NormalizeOperation : public TensorOperation { | |||
| std::vector<float> std_; | |||
| }; | |||
| class OneHotOperation : public TensorOperation { | |||
| public: | |||
| explicit OneHotOperation(int32_t num_classes_); | |||
| ~OneHotOperation() = default; | |||
| std::shared_ptr<TensorOp> Build() override; | |||
| bool ValidateParams() override; | |||
| private: | |||
| float num_classes_; | |||
| }; | |||
| class PadOperation : public TensorOperation { | |||
| public: | |||
| PadOperation(std::vector<int32_t> padding, std::vector<uint8_t> fill_value = {0}, | |||
| @@ -20,6 +20,7 @@ | |||
| #include <limits> | |||
| #include <string> | |||
| #include <vector> | |||
| #include <utility> | |||
| #include "minddata/dataset/core/constants.h" | |||
| #include "minddata/dataset/core/data_type.h" | |||
| @@ -648,5 +649,30 @@ Status Concatenate(const TensorRow &input, TensorRow *output, int8_t axis, std:: | |||
| return Status::OK(); | |||
| } | |||
| Status BatchTensorToCVTensorVector(const std::shared_ptr<Tensor> &input, | |||
| std::vector<std::shared_ptr<CVTensor>> *output) { | |||
| std::vector<int64_t> tensor_shape = input->shape().AsVector(); | |||
| TensorShape remaining({-1}); | |||
| std::vector<int64_t> index(tensor_shape.size(), 0); | |||
| if (tensor_shape.size() <= 1) { | |||
| RETURN_STATUS_UNEXPECTED("Tensor must be at least 2-D in order to unpack"); | |||
| } | |||
| TensorShape element_shape(std::vector<int64_t>(tensor_shape.begin() + 1, tensor_shape.end())); | |||
| for (; index[0] < tensor_shape[0]; index[0]++) { | |||
| uchar *start_addr_of_index = nullptr; | |||
| std::shared_ptr<Tensor> out; | |||
| RETURN_IF_NOT_OK(input->StartAddrOfIndex(index, &start_addr_of_index, &remaining)); | |||
| RETURN_IF_NOT_OK(input->CreateFromMemory(element_shape, input->type(), start_addr_of_index, &out)); | |||
| std::shared_ptr<CVTensor> cv_out = CVTensor::AsCVTensor(std::move(out)); | |||
| if (!cv_out->mat().data) { | |||
| RETURN_STATUS_UNEXPECTED("Could not convert to CV Tensor"); | |||
| } | |||
| output->push_back(cv_out); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -152,6 +152,17 @@ Status Mask(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *outpu | |||
| Status Concatenate(const TensorRow &input, TensorRow *output, int8_t axis, std::shared_ptr<Tensor> prepend, | |||
| std::shared_ptr<Tensor> append); | |||
| // helper for concat, always append to the input, and pass that to the output | |||
| Status ConcatenateHelper(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int8_t axis, | |||
| std::shared_ptr<Tensor> append); | |||
| /// Convert an n-dimensional Tensor to a vector of (n-1)-dimensional CVTensors | |||
| /// @param input[in] input tensor | |||
| /// @param output[out] output tensor | |||
| /// @return Status ok/error | |||
| Status BatchTensorToCVTensorVector(const std::shared_ptr<Tensor> &input, | |||
| std::vector<std::shared_ptr<CVTensor>> *output); | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -10,6 +10,7 @@ add_library(kernels-image OBJECT | |||
| hwc_to_chw_op.cc | |||
| image_utils.cc | |||
| invert_op.cc | |||
| mixup_batch_op.cc | |||
| normalize_op.cc | |||
| pad_op.cc | |||
| random_color_adjust_op.cc | |||
| @@ -0,0 +1,108 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <string> | |||
| #include <utility> | |||
| #include "minddata/dataset/core/cv_tensor.h" | |||
| #include "minddata/dataset/kernels/image/mixup_batch_op.h" | |||
| #include "minddata/dataset/kernels/data/data_utils.h" | |||
| #include "minddata/dataset/util/random.h" | |||
| #include "minddata/dataset/util/status.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| MixUpBatchOp::MixUpBatchOp(float alpha) : alpha_(alpha) { rnd_.seed(GetSeed()); } | |||
| Status MixUpBatchOp::Compute(const TensorRow &input, TensorRow *output) { | |||
| if (input.size() < 2) { | |||
| RETURN_STATUS_UNEXPECTED("Both images and labels columns are required for this operation"); | |||
| } | |||
| std::vector<std::shared_ptr<CVTensor>> images; | |||
| std::vector<int64_t> image_shape = input.at(0)->shape().AsVector(); | |||
| std::vector<int64_t> label_shape = input.at(1)->shape().AsVector(); | |||
| // Check inputs | |||
| if (label_shape.size() != 2 || image_shape.size() != 4 || image_shape[0] != label_shape[0]) { | |||
| RETURN_STATUS_UNEXPECTED("You must batch before calling MixUpBatch"); | |||
| } | |||
| if ((image_shape[1] != 1 && image_shape[1] != 3) && (image_shape[3] != 1 && image_shape[3] != 3)) { | |||
| RETURN_STATUS_UNEXPECTED("MixUpBatch: Images must be in the shape of HWC or CHW"); | |||
| } | |||
| // Move images into a vector of CVTensors | |||
| RETURN_IF_NOT_OK(BatchTensorToCVTensorVector(input.at(0), &images)); | |||
| // Calculating lambda | |||
| // If x1 is a random variable from Gamma(a1, 1) and x2 is a random variable from Gamma(a2, 1) | |||
| // then x = x1 / (x1+x2) is a random variable from Beta(a1, a2) | |||
| std::gamma_distribution<float> distribution(alpha_, 1); | |||
| float x1 = distribution(rnd_); | |||
| float x2 = distribution(rnd_); | |||
| float lam = x1 / (x1 + x2); | |||
| // Calculate random labels | |||
| std::vector<int64_t> rand_indx; | |||
| for (int64_t i = 0; i < images.size(); i++) rand_indx.push_back(i); | |||
| std::shuffle(rand_indx.begin(), rand_indx.end(), rnd_); | |||
| // Compute labels | |||
| std::shared_ptr<Tensor> out_labels; | |||
| RETURN_IF_NOT_OK(TypeCast(std::move(input.at(1)), &out_labels, DataType("float32"))); | |||
| for (int64_t i = 0; i < label_shape[0]; i++) { | |||
| for (int64_t j = 0; j < label_shape[1]; j++) { | |||
| uint64_t first_value, second_value; | |||
| RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&first_value, {i, j})); | |||
| RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&second_value, {rand_indx[i], j})); | |||
| RETURN_IF_NOT_OK(out_labels->SetItemAt({i, j}, lam * first_value + (1 - lam) * second_value)); | |||
| } | |||
| } | |||
| // Compute images | |||
| for (int64_t i = 0; i < images.size(); i++) { | |||
| TensorShape remaining({-1}); | |||
| uchar *start_addr_of_index = nullptr; | |||
| std::shared_ptr<Tensor> out; | |||
| RETURN_IF_NOT_OK(input.at(0)->StartAddrOfIndex({rand_indx[i], 0, 0, 0}, &start_addr_of_index, &remaining)); | |||
| RETURN_IF_NOT_OK(input.at(0)->CreateFromMemory(TensorShape({image_shape[1], image_shape[2], image_shape[3]}), | |||
| input.at(0)->type(), start_addr_of_index, &out)); | |||
| std::shared_ptr<CVTensor> rand_image = CVTensor::AsCVTensor(std::move(out)); | |||
| if (!rand_image->mat().data) { | |||
| RETURN_STATUS_UNEXPECTED("Could not convert to CV Tensor"); | |||
| } | |||
| images[i]->mat() = lam * images[i]->mat() + (1 - lam) * rand_image->mat(); | |||
| } | |||
| // Move the output into a TensorRow | |||
| std::shared_ptr<Tensor> output_image; | |||
| RETURN_IF_NOT_OK(Tensor::CreateEmpty(input.at(0)->shape(), input.at(0)->type(), &output_image)); | |||
| for (int64_t i = 0; i < images.size(); i++) { | |||
| RETURN_IF_NOT_OK(output_image->InsertTensor({i}, images[i])); | |||
| } | |||
| output->push_back(output_image); | |||
| output->push_back(out_labels); | |||
| return Status::OK(); | |||
| } | |||
| void MixUpBatchOp::Print(std::ostream &out) const { | |||
| out << "MixUpBatchOp: " | |||
| << "alpha: " << alpha_ << "\n"; | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,51 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_MIXUPBATCH_OP_H_ | |||
| #define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_MIXUPBATCH_OP_H_ | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <random> | |||
| #include <string> | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/kernels/tensor_op.h" | |||
| #include "minddata/dataset/util/status.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| class MixUpBatchOp : public TensorOp { | |||
| public: | |||
| // Default values, also used by python_bindings.cc | |||
| explicit MixUpBatchOp(float alpha); | |||
| ~MixUpBatchOp() override = default; | |||
| void Print(std::ostream &out) const override; | |||
| Status Compute(const TensorRow &input, TensorRow *output) override; | |||
| std::string Name() const override { return kMixUpBatchOp; } | |||
| private: | |||
| float alpha_; | |||
| std::mt19937 rnd_; | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IMAGE_MIXUPBATCH_OP_H_ | |||
| @@ -99,6 +99,7 @@ constexpr char kCropOp[] = "CropOp"; | |||
| constexpr char kEqualizeOp[] = "EqualizeOp"; | |||
| constexpr char kHwcToChwOp[] = "HwcToChwOp"; | |||
| constexpr char kInvertOp[] = "InvertOp"; | |||
| constexpr char kMixUpBatchOp[] = "MixUpBatchOp"; | |||
| constexpr char kNormalizeOp[] = "NormalizeOp"; | |||
| constexpr char kPadOp[] = "PadOp"; | |||
| constexpr char kRandomColorAdjustOp[] = "RandomColorAdjustOp"; | |||
| @@ -45,9 +45,9 @@ import mindspore._c_dataengine as cde | |||
| from .utils import Inter, Border | |||
| from .validators import check_prob, check_crop, check_resize_interpolation, check_random_resize_crop, \ | |||
| check_normalize_c, check_random_crop, check_random_color_adjust, check_random_rotation, check_range, \ | |||
| check_resize, check_rescale, check_pad, check_cutout, check_uniform_augment_cpp, check_bounding_box_augment_cpp, \ | |||
| check_random_select_subpolicy_op, check_auto_contrast, FLOAT_MAX_INTEGER | |||
| check_mix_up_batch_c, check_normalize_c, check_random_crop, check_random_color_adjust, check_random_rotation, \ | |||
| check_range, check_resize, check_rescale, check_pad, check_cutout, check_uniform_augment_cpp, \ | |||
| check_bounding_box_augment_cpp, check_random_select_subpolicy_op, check_auto_contrast, FLOAT_MAX_INTEGER | |||
| DE_C_INTER_MODE = {Inter.NEAREST: cde.InterpolationMode.DE_INTER_NEAREST_NEIGHBOUR, | |||
| Inter.LINEAR: cde.InterpolationMode.DE_INTER_LINEAR, | |||
| @@ -130,6 +130,30 @@ class CutOut(cde.CutOutOp): | |||
| super().__init__(length, length, num_patches, False, *fill_value) | |||
| class MixUpBatch(cde.MixUpBatchOp): | |||
| """ | |||
| Apply MixUp transformation on input batch of images and labels. Each image is multiplied by a random weight (lambda) | |||
| and then added to a randomly selected image from the batch multiplied by (1 - lambda). Same formula is also applied | |||
| to the one-hot labels. | |||
| Note that you need to make labels into one-hot format and batch before calling this function. | |||
| Args: | |||
| alpha (float): hyperparameter of beta distribution (default = 1.0). | |||
| Examples: | |||
| >>> one_hot_op = data.OneHot(num_classes=10) | |||
| >>> data = data.map(input_columns=["label"], operations=one_hot_op) | |||
| >>> mixup_batch_op = vision.MixUpBatch() | |||
| >>> data = data.batch(5) | |||
| >>> data = data.map(input_columns=["image", "label"], operations=mixup_batch_op) | |||
| """ | |||
| @check_mix_up_batch_c | |||
| def __init__(self, alpha=1.0): | |||
| self.alpha = alpha | |||
| super().__init__(alpha) | |||
| class Normalize(cde.NormalizeOp): | |||
| """ | |||
| Normalize the input image with respect to mean and standard deviation. | |||
| @@ -47,6 +47,19 @@ def check_resize_size(size): | |||
| raise TypeError("Size should be a single integer or a list/tuple (h, w) of length 2.") | |||
| def check_mix_up_batch_c(method): | |||
| """Wrapper method to check the parameters of MixUpBatch.""" | |||
| @wraps(method) | |||
| def new_method(self, *args, **kwargs): | |||
| [alpha], _ = parse_user_args(method, *args, **kwargs) | |||
| check_pos_float32(alpha) | |||
| return method(self, *args, **kwargs) | |||
| return new_method | |||
| def check_normalize_c_param(mean, std): | |||
| if len(mean) != len(std): | |||
| raise ValueError("Length of mean and std must be equal") | |||
| @@ -27,6 +27,7 @@ SET(DE_UT_SRCS | |||
| main_test.cc | |||
| map_op_test.cc | |||
| mind_record_op_test.cc | |||
| mixup_batch_op_test.cc | |||
| memory_pool_test.cc | |||
| normalize_op_test.cc | |||
| one_hot_op_test.cc | |||
| @@ -146,6 +146,127 @@ TEST_F(MindDataTestPipeline, TestRandomFlip) { | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess1) { | |||
| // Create a Cifar10 Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; | |||
| std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 10)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 5; | |||
| ds = ds->Batch(batch_size); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> one_hot_op = vision::OneHot(10); | |||
| EXPECT_NE(one_hot_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({one_hot_op},{"label"}); | |||
| EXPECT_NE(ds, nullptr); | |||
| std::shared_ptr<TensorOperation> mixup_batch_op = vision::MixUpBatch(0.5); | |||
| EXPECT_NE(mixup_batch_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({mixup_batch_op}, {"image", "label"}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // This will trigger the creation of the Execution Tree and launch it. | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| EXPECT_NE(iter, nullptr); | |||
| // Iterate the dataset and get each row | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(i, 2); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) { | |||
| // Create a Cifar10 Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; | |||
| std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 10)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 5; | |||
| ds = ds->Batch(batch_size); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> one_hot_op = vision::OneHot(10); | |||
| EXPECT_NE(one_hot_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({one_hot_op},{"label"}); | |||
| EXPECT_NE(ds, nullptr); | |||
| std::shared_ptr<TensorOperation> mixup_batch_op = vision::MixUpBatch(); | |||
| EXPECT_NE(mixup_batch_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({mixup_batch_op}, {"image", "label"}); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create an iterator over the result of the above dataset | |||
| // This will trigger the creation of the Execution Tree and launch it. | |||
| std::shared_ptr<Iterator> iter = ds->CreateIterator(); | |||
| EXPECT_NE(iter, nullptr); | |||
| // Iterate the dataset and get each row | |||
| std::unordered_map<std::string, std::shared_ptr<Tensor>> row; | |||
| iter->GetNextRow(&row); | |||
| uint64_t i = 0; | |||
| while (row.size() != 0) { | |||
| i++; | |||
| auto image = row["image"]; | |||
| MS_LOG(INFO) << "Tensor image shape: " << image->shape(); | |||
| iter->GetNextRow(&row); | |||
| } | |||
| EXPECT_EQ(i, 2); | |||
| // Manually terminate the pipeline | |||
| iter->Stop(); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) { | |||
| // Create a Cifar10 Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; | |||
| std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 10)); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create a Batch operation on ds | |||
| int32_t batch_size = 5; | |||
| ds = ds->Batch(batch_size); | |||
| EXPECT_NE(ds, nullptr); | |||
| // Create objects for the tensor ops | |||
| std::shared_ptr<TensorOperation> one_hot_op = vision::OneHot(10); | |||
| EXPECT_NE(one_hot_op, nullptr); | |||
| // Create a Map operation on ds | |||
| ds = ds->Map({one_hot_op},{"label"}); | |||
| EXPECT_NE(ds, nullptr); | |||
| std::shared_ptr<TensorOperation> mixup_batch_op = vision::MixUpBatch(-1); | |||
| EXPECT_EQ(mixup_batch_op, nullptr); | |||
| } | |||
| TEST_F(MindDataTestPipeline, TestPad) { | |||
| // Create an ImageFolder Dataset | |||
| std::string folder_path = datasets_root_path_ + "/testPK/data/"; | |||
| @@ -0,0 +1,69 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "common/common.h" | |||
| #include "common/cvop_common.h" | |||
| #include "minddata/dataset/kernels/image/mixup_batch_op.h" | |||
| #include "utils/log_adapter.h" | |||
| using namespace mindspore::dataset; | |||
| using mindspore::MsLogLevel::INFO; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::LogStream; | |||
| class MindDataTestMixUpBatchOp : public UT::CVOP::CVOpCommon { | |||
| protected: | |||
| MindDataTestMixUpBatchOp() : CVOpCommon() {} | |||
| std::shared_ptr<Tensor> output_tensor_; | |||
| }; | |||
| TEST_F(MindDataTestMixUpBatchOp, TestSuccess) { | |||
| MS_LOG(INFO) << "Doing MindDataTestMixUpBatchOp success case"; | |||
| std::shared_ptr<Tensor> batched_tensor; | |||
| std::shared_ptr<Tensor> batched_labels; | |||
| Tensor::CreateEmpty(TensorShape({2, input_tensor_->shape()[0], input_tensor_->shape()[1], input_tensor_->shape()[2]}), input_tensor_->type(), &batched_tensor); | |||
| for (int i = 0; i < 2; i++) { | |||
| batched_tensor->InsertTensor({i}, input_tensor_); | |||
| } | |||
| Tensor::CreateFromVector(std::vector<uint32_t>({0, 1, 1, 0}), TensorShape({2, 2}), &batched_labels); | |||
| std::shared_ptr<MixUpBatchOp> op = std::make_shared<MixUpBatchOp>(1); | |||
| TensorRow in; | |||
| in.push_back(batched_tensor); | |||
| in.push_back(batched_labels); | |||
| TensorRow out; | |||
| ASSERT_TRUE(op->Compute(in, &out).IsOk()); | |||
| EXPECT_EQ(in.at(0)->shape()[0], out.at(0)->shape()[0]); | |||
| EXPECT_EQ(in.at(0)->shape()[1], out.at(0)->shape()[1]); | |||
| EXPECT_EQ(in.at(0)->shape()[2], out.at(0)->shape()[2]); | |||
| EXPECT_EQ(in.at(0)->shape()[3], out.at(0)->shape()[3]); | |||
| EXPECT_EQ(in.at(1)->shape()[0], out.at(1)->shape()[0]); | |||
| EXPECT_EQ(in.at(1)->shape()[1], out.at(1)->shape()[1]); | |||
| } | |||
| TEST_F(MindDataTestMixUpBatchOp, TestFail) { | |||
| // This is a fail case because our labels are not batched and are 1-dimensional | |||
| MS_LOG(INFO) << "Doing MindDataTestMixUpBatchOp fail case"; | |||
| std::shared_ptr<Tensor> labels; | |||
| Tensor::CreateFromVector(std::vector<uint32_t>({0, 1, 1, 0}), TensorShape({4}), &labels); | |||
| std::shared_ptr<MixUpBatchOp> op = std::make_shared<MixUpBatchOp>(1); | |||
| TensorRow in; | |||
| in.push_back(input_tensor_); | |||
| in.push_back(labels); | |||
| TensorRow out; | |||
| ASSERT_FALSE(op->Compute(in, &out).IsOk()); | |||
| } | |||
| @@ -0,0 +1,247 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================== | |||
| """ | |||
| Testing the MixUpBatch op in DE | |||
| """ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.dataset as ds | |||
| import mindspore.dataset.transforms.vision.c_transforms as vision | |||
| import mindspore.dataset.transforms.c_transforms as data_trans | |||
| from mindspore import log as logger | |||
| from util import save_and_check_md5, diff_mse, visualize_list, config_get_set_seed, \ | |||
| config_get_set_num_parallel_workers | |||
| DATA_DIR = "../data/dataset/testCifar10Data" | |||
| GENERATE_GOLDEN = False | |||
| def test_mixup_batch_success1(plot=False): | |||
| """ | |||
| Test MixUpBatch op with specified alpha parameter | |||
| """ | |||
| logger.info("test_mixup_batch_success1") | |||
| # Original Images | |||
| ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False) | |||
| ds_original = ds_original.batch(5, drop_remainder=True) | |||
| images_original = None | |||
| for idx, (image, _) in enumerate(ds_original): | |||
| if idx == 0: | |||
| images_original = image | |||
| else: | |||
| images_original = np.append(images_original, image, axis=0) | |||
| # MixUp Images | |||
| data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False) | |||
| one_hot_op = data_trans.OneHot(num_classes=10) | |||
| data1 = data1.map(input_columns=["label"], operations=one_hot_op) | |||
| mixup_batch_op = vision.MixUpBatch(2) | |||
| data1 = data1.batch(5, drop_remainder=True) | |||
| data1 = data1.map(input_columns=["image", "label"], operations=mixup_batch_op) | |||
| images_mixup = None | |||
| for idx, (image, _) in enumerate(data1): | |||
| if idx == 0: | |||
| images_mixup = image | |||
| else: | |||
| images_mixup = np.append(images_mixup, image, axis=0) | |||
| if plot: | |||
| visualize_list(images_original, images_mixup) | |||
| num_samples = images_original.shape[0] | |||
| mse = np.zeros(num_samples) | |||
| for i in range(num_samples): | |||
| mse[i] = diff_mse(images_mixup[i], images_original[i]) | |||
| logger.info("MSE= {}".format(str(np.mean(mse)))) | |||
| def test_mixup_batch_success2(plot=False): | |||
| """ | |||
| Test MixUpBatch op without specified alpha parameter. | |||
| Alpha parameter will be selected by default in this case | |||
| """ | |||
| logger.info("test_mixup_batch_success2") | |||
| # Original Images | |||
| ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False) | |||
| ds_original = ds_original.batch(5, drop_remainder=True) | |||
| images_original = None | |||
| for idx, (image, _) in enumerate(ds_original): | |||
| if idx == 0: | |||
| images_original = image | |||
| else: | |||
| images_original = np.append(images_original, image, axis=0) | |||
| # MixUp Images | |||
| data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False) | |||
| one_hot_op = data_trans.OneHot(num_classes=10) | |||
| data1 = data1.map(input_columns=["label"], operations=one_hot_op) | |||
| mixup_batch_op = vision.MixUpBatch() | |||
| data1 = data1.batch(5, drop_remainder=True) | |||
| data1 = data1.map(input_columns=["image", "label"], operations=mixup_batch_op) | |||
| images_mixup = np.array([]) | |||
| for idx, (image, _) in enumerate(data1): | |||
| if idx == 0: | |||
| images_mixup = image | |||
| else: | |||
| images_mixup = np.append(images_mixup, image, axis=0) | |||
| if plot: | |||
| visualize_list(images_original, images_mixup) | |||
| num_samples = images_original.shape[0] | |||
| mse = np.zeros(num_samples) | |||
| for i in range(num_samples): | |||
| mse[i] = diff_mse(images_mixup[i], images_original[i]) | |||
| logger.info("MSE= {}".format(str(np.mean(mse)))) | |||
| def test_mixup_batch_md5(): | |||
| """ | |||
| Test MixUpBatch with MD5: | |||
| """ | |||
| logger.info("test_mixup_batch_md5") | |||
| original_seed = config_get_set_seed(0) | |||
| original_num_parallel_workers = config_get_set_num_parallel_workers(1) | |||
| # MixUp Images | |||
| data = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False) | |||
| one_hot_op = data_trans.OneHot(num_classes=10) | |||
| data = data.map(input_columns=["label"], operations=one_hot_op) | |||
| mixup_batch_op = vision.MixUpBatch() | |||
| data = data.batch(5, drop_remainder=True) | |||
| data = data.map(input_columns=["image", "label"], operations=mixup_batch_op) | |||
| filename = "mixup_batch_c_result.npz" | |||
| save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) | |||
| # Restore config setting | |||
| ds.config.set_seed(original_seed) | |||
| ds.config.set_num_parallel_workers(original_num_parallel_workers) | |||
| def test_mixup_batch_fail1(): | |||
| """ | |||
| Test MixUpBatch Fail 1 | |||
| We expect this to fail because the images and labels are not batched | |||
| """ | |||
| logger.info("test_mixup_batch_fail1") | |||
| # Original Images | |||
| ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False) | |||
| ds_original = ds_original.batch(5) | |||
| images_original = np.array([]) | |||
| for idx, (image, _) in enumerate(ds_original): | |||
| if idx == 0: | |||
| images_original = image | |||
| else: | |||
| images_original = np.append(images_original, image, axis=0) | |||
| # MixUp Images | |||
| data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False) | |||
| one_hot_op = data_trans.OneHot(num_classes=10) | |||
| data1 = data1.map(input_columns=["label"], operations=one_hot_op) | |||
| mixup_batch_op = vision.MixUpBatch(0.1) | |||
| with pytest.raises(RuntimeError) as error: | |||
| data1 = data1.map(input_columns=["image", "label"], operations=mixup_batch_op) | |||
| for idx, (image, _) in enumerate(data1): | |||
| if idx == 0: | |||
| images_mixup = image | |||
| else: | |||
| images_mixup = np.append(images_mixup, image, axis=0) | |||
| error_message = "You must batch before calling MixUp" | |||
| assert error_message in str(error.value) | |||
| def test_mixup_batch_fail2(): | |||
| """ | |||
| Test MixUpBatch Fail 2 | |||
| We expect this to fail because alpha is negative | |||
| """ | |||
| logger.info("test_mixup_batch_fail2") | |||
| # Original Images | |||
| ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False) | |||
| ds_original = ds_original.batch(5) | |||
| images_original = np.array([]) | |||
| for idx, (image, _) in enumerate(ds_original): | |||
| if idx == 0: | |||
| images_original = image | |||
| else: | |||
| images_original = np.append(images_original, image, axis=0) | |||
| # MixUp Images | |||
| data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False) | |||
| one_hot_op = data_trans.OneHot(num_classes=10) | |||
| data1 = data1.map(input_columns=["label"], operations=one_hot_op) | |||
| with pytest.raises(ValueError) as error: | |||
| vision.MixUpBatch(-1) | |||
| error_message = "Input is not within the required interval" | |||
| assert error_message in str(error.value) | |||
| def test_mixup_batch_fail3(): | |||
| """ | |||
| Test MixUpBatch op | |||
| We expect this to fail because label column is not passed to mixup_batch | |||
| """ | |||
| # Original Images | |||
| ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False) | |||
| ds_original = ds_original.batch(5, drop_remainder=True) | |||
| images_original = None | |||
| for idx, (image, _) in enumerate(ds_original): | |||
| if idx == 0: | |||
| images_original = image | |||
| else: | |||
| images_original = np.append(images_original, image, axis=0) | |||
| # MixUp Images | |||
| data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False) | |||
| one_hot_op = data_trans.OneHot(num_classes=10) | |||
| data1 = data1.map(input_columns=["label"], operations=one_hot_op) | |||
| mixup_batch_op = vision.MixUpBatch() | |||
| data1 = data1.batch(5, drop_remainder=True) | |||
| data1 = data1.map(input_columns=["image"], operations=mixup_batch_op) | |||
| with pytest.raises(RuntimeError) as error: | |||
| images_mixup = np.array([]) | |||
| for idx, (image, _) in enumerate(data1): | |||
| if idx == 0: | |||
| images_mixup = image | |||
| else: | |||
| images_mixup = np.append(images_mixup, image, axis=0) | |||
| error_message = "Both images and labels columns are required" | |||
| assert error_message in str(error.value) | |||
| if __name__ == "__main__": | |||
| test_mixup_batch_success1(plot=True) | |||
| test_mixup_batch_success2(plot=True) | |||
| test_mixup_batch_md5() | |||
| test_mixup_batch_fail1() | |||
| test_mixup_batch_fail2() | |||
| test_mixup_batch_fail3() | |||