From: @zhangzhewei01 Reviewed-by: Signed-off-by:tags/v1.2.0-rc1
| @@ -0,0 +1,100 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/binary_cross_entropy_cpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| void BinaryCrossEntropyCpuKernel::LaunchToScalar(const int &input_size, const int &reduction, T *loss, T *tmp_loss) { | |||
| if (input_size % 2 == 1) { | |||
| tmp_loss[0] += tmp_loss[input_size - 1]; | |||
| } | |||
| for (int stride = input_size / 2; stride > 0; stride >>= 1) { | |||
| for (int i = 0; i < stride; i++) { | |||
| tmp_loss[i] += tmp_loss[i + stride]; | |||
| } | |||
| if (stride > 2 && stride % 2 == 1) { | |||
| tmp_loss[0] += tmp_loss[stride - 1]; | |||
| } | |||
| } | |||
| loss[0] += tmp_loss[0]; | |||
| if (reduction == 1) { | |||
| loss[0] /= static_cast<T>(input_size); | |||
| } | |||
| } | |||
| template <typename T> | |||
| void BinaryCrossEntropyCpuKernel::Launchkernel(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) { | |||
| T *input_x = reinterpret_cast<T *>(inputs[0]->addr); | |||
| T *input_y = reinterpret_cast<T *>(inputs[1]->addr); | |||
| T *weight = reinterpret_cast<T *>(inputs[2]->addr); | |||
| T *loss = reinterpret_cast<T *>(outputs[0]->addr); | |||
| std::vector<T> tmp_loss(input_size_); | |||
| T epsilon = static_cast<T>(1e-12); | |||
| T one = static_cast<T>(1); | |||
| if (reduction_ == 0) { | |||
| for (size_t i = 0; i < input_size_; i++) { | |||
| T value = | |||
| -weight[i] * (input_y[i] * log(input_x[i] + epsilon) + (one - input_y[i]) * log(one - input_x[i] + epsilon)); | |||
| loss[i] = value; | |||
| } | |||
| } else { | |||
| for (size_t i = 0; i < input_size_; i++) { | |||
| T value = | |||
| -weight[i] * (input_y[i] * log(input_x[i] + epsilon) + (one - input_y[i]) * log(one - input_x[i] + epsilon)); | |||
| tmp_loss[i] = value; | |||
| } | |||
| } | |||
| if (reduction_ != 0) { | |||
| LaunchToScalar<T>(input_size_, reduction_, loss, tmp_loss.data()); | |||
| } | |||
| } | |||
| bool BinaryCrossEntropyCpuKernel::Launch(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) { | |||
| if (input_size_ > 0) { | |||
| if (dtype_ == kNumberTypeFloat32) { | |||
| Launchkernel<float>(inputs, workspace, outputs); | |||
| } else if (dtype_ == kNumberTypeFloat16) { | |||
| Launchkernel<float16>(inputs, workspace, outputs); | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| void BinaryCrossEntropyCpuKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||
| input_size_ *= input_shape[i]; | |||
| } | |||
| string reduction = AnfAlgo::GetNodeAttr<string>(kernel_node, "reduction"); | |||
| if (reduction == "none") { | |||
| reduction_ = 0; | |||
| } else if (reduction == "sum") { | |||
| reduction_ = 2; | |||
| } | |||
| dtype_ = AnfAlgo::GetInputDeviceDataType(kernel_node, 0); | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,62 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H | |||
| #include <vector> | |||
| #include <string> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class BinaryCrossEntropyCpuKernel : public CPUKernel { | |||
| public: | |||
| BinaryCrossEntropyCpuKernel() : input_size_(1), reduction_(1) {} | |||
| ~BinaryCrossEntropyCpuKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| private: | |||
| template <typename T> | |||
| void LaunchToScalar(const int &input_size, const int &reduction, T *loss, T *tmp_loss); | |||
| template <typename T> | |||
| void Launchkernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs); | |||
| TypeId dtype_{kTypeUnknown}; | |||
| size_t input_size_; | |||
| int reduction_; | |||
| }; | |||
| MS_REG_CPU_KERNEL(BinaryCrossEntropy, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddOutputAttr(kNumberTypeFloat16), | |||
| BinaryCrossEntropyCpuKernel); | |||
| MS_REG_CPU_KERNEL(BinaryCrossEntropy, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| BinaryCrossEntropyCpuKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H | |||
| @@ -0,0 +1,78 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/binary_cross_entropy_grad_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| void BinaryCrossEntropyGradCpuKernel::Launchkernel(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<AddressPtr> &outputs) { | |||
| T *input_x = reinterpret_cast<T *>(inputs[0]->addr); | |||
| T *input_y = reinterpret_cast<T *>(inputs[1]->addr); | |||
| T *dloss = reinterpret_cast<T *>(inputs[2]->addr); | |||
| T *weight = reinterpret_cast<T *>(inputs[3]->addr); | |||
| T *dx = reinterpret_cast<T *>(outputs[0]->addr); | |||
| T epsilon = static_cast<T>(1e-12); | |||
| T one = static_cast<T>(1); | |||
| if (reduction_ == 0) { | |||
| for (size_t i = 0; i < input_size_; i++) { | |||
| T denominator = ((input_x[i] * (one - input_x[i])) > epsilon) ? (input_x[i] * (one - input_x[i])) : epsilon; | |||
| T value = weight[i] * (input_x[i] - input_y[i]) / denominator; | |||
| dx[i] = value * dloss[i]; | |||
| } | |||
| } else { | |||
| T dloss1 = dloss[0]; | |||
| if (reduction_ == 1) { | |||
| dloss1 = dloss[0] / static_cast<T>(input_size_); | |||
| } | |||
| for (size_t i = 0; i < input_size_; i++) { | |||
| T denominator = ((input_x[i] * (one - input_x[i])) > epsilon) ? (input_x[i] * (one - input_x[i])) : epsilon; | |||
| T value = weight[i] * (input_x[i] - input_y[i]) / denominator; | |||
| dx[i] = value * dloss1; | |||
| } | |||
| } | |||
| } | |||
| bool BinaryCrossEntropyGradCpuKernel::Launch(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) { | |||
| if (input_size_ > 0) { | |||
| if (dtype_ == kNumberTypeFloat32) { | |||
| Launchkernel<float>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeFloat16) { | |||
| Launchkernel<float16>(inputs, outputs); | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| void BinaryCrossEntropyGradCpuKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||
| input_size_ *= input_shape[i]; | |||
| } | |||
| string reduction = AnfAlgo::GetNodeAttr<string>(kernel_node, "reduction"); | |||
| if (reduction == "none") { | |||
| reduction_ = 0; | |||
| } else if (reduction == "sum") { | |||
| reduction_ = 2; | |||
| } | |||
| dtype_ = AnfAlgo::GetInputDeviceDataType(kernel_node, 0); | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,61 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H | |||
| #include <vector> | |||
| #include <string> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class BinaryCrossEntropyGradCpuKernel : public CPUKernel { | |||
| public: | |||
| BinaryCrossEntropyGradCpuKernel() : input_size_(1), reduction_(1) {} | |||
| ~BinaryCrossEntropyGradCpuKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| private: | |||
| template <typename T> | |||
| void Launchkernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||
| TypeId dtype_{kTypeUnknown}; | |||
| size_t input_size_; | |||
| int reduction_; | |||
| }; | |||
| MS_REG_CPU_KERNEL(BinaryCrossEntropyGrad, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddOutputAttr(kNumberTypeFloat16), | |||
| BinaryCrossEntropyGradCpuKernel); | |||
| MS_REG_CPU_KERNEL(BinaryCrossEntropyGrad, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| BinaryCrossEntropyGradCpuKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H | |||
| @@ -4619,7 +4619,7 @@ class BinaryCrossEntropy(PrimitiveWithInfer): | |||
| Otherwise, the output is a scalar. | |||
| Supported Platforms: | |||
| ``Ascend`` ``GPU`` | |||
| ``Ascend`` ``GPU`` ``CPU`` | |||
| Examples: | |||
| >>> import mindspore | |||
| @@ -0,0 +1,141 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import composite as C | |||
| from mindspore.ops import operations as P | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
| class Net(nn.Cell): | |||
| def __init__(self, reduction="none"): | |||
| super(Net, self).__init__() | |||
| self.BinaryCrossEntropy = P.BinaryCrossEntropy(reduction) | |||
| def construct(self, x, y, weight): | |||
| return self.BinaryCrossEntropy(x, y, weight) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_binary_cross_entropy_loss(): | |||
| np.random.seed(42) | |||
| prediction = np.random.rand(20).astype(np.float32) | |||
| target = np.random.rand(20).astype(np.float32) | |||
| weight = np.random.rand(20).astype(np.float32) | |||
| reduction = "none" | |||
| net = Net(reduction) | |||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||
| expect = [0.09555826, 1.2861121, 0.03518666, 0.6969416, 0.24313456, 0.99062896, | |||
| 0.19205657, 0.5465214, 0.36964455, 0.21999404, 2.2953863, 2.2566645, | |||
| 1.5803775, 1.3266402, 0.9883408, 1.2997618, 0.05439841, 0.14389999, | |||
| 0.03405444, 0.23934692] | |||
| assert np.allclose(loss.asnumpy(), expect) | |||
| def test_binary_cross_entropy_loss_mean(): | |||
| np.random.seed(42) | |||
| prediction = np.random.rand(20).astype(np.float32) | |||
| target = np.random.rand(20).astype(np.float32) | |||
| weight = np.random.rand(20).astype(np.float32) | |||
| reduction = "mean" | |||
| net = Net(reduction) | |||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||
| expect = [0.7447324991226196] | |||
| assert loss.asnumpy() == expect | |||
| def test_binary_cross_entropy_loss_sum(): | |||
| np.random.seed(42) | |||
| prediction = np.random.rand(20).astype(np.float32) | |||
| target = np.random.rand(20).astype(np.float32) | |||
| weight = np.random.rand(20).astype(np.float32) | |||
| reduction = "sum" | |||
| net = Net(reduction) | |||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||
| expect = [14.894649505615234] | |||
| assert loss.asnumpy() == expect | |||
| def test_binary_cross_entropy_loss_16(): | |||
| np.random.seed(42) | |||
| prediction = np.random.rand(20).astype(np.float16) | |||
| target = np.random.rand(20).astype(np.float16) | |||
| weight = np.random.rand(20).astype(np.float16) | |||
| reduction = "none" | |||
| net = Net(reduction) | |||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||
| expect = [0.09552, 1.28613, 0.0351868, 0.696777, 0.243164, 0.990234, | |||
| 0.192139, 0.546875, 0.370117, 0.219971, 2.29492, 2.25391, | |||
| 1.58105, 1.32812, 0.987305, 1.30078, 0.0544434, 0.143921, | |||
| 0.0340576, 0.239258] | |||
| assert np.allclose(loss.asnumpy(), expect) | |||
| def test_binary_cross_entropy_loss_mean_16(): | |||
| np.random.seed(42) | |||
| prediction = np.random.rand(20).astype(np.float16) | |||
| target = np.random.rand(20).astype(np.float16) | |||
| weight = np.random.rand(20).astype(np.float16) | |||
| reduction = "mean" | |||
| net = Net(reduction) | |||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||
| expect = [0.74462890625] | |||
| assert loss.asnumpy() == expect | |||
| def test_binary_cross_entropy_loss_sum_16(): | |||
| np.random.seed(42) | |||
| prediction = np.random.rand(20).astype(np.float16) | |||
| target = np.random.rand(20).astype(np.float16) | |||
| weight = np.random.rand(20).astype(np.float16) | |||
| reduction = "sum" | |||
| net = Net(reduction) | |||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||
| expect = [14.890625] | |||
| assert loss.asnumpy() == expect | |||
| class Grad(nn.Cell): | |||
| def __init__(self, network): | |||
| super(Grad, self).__init__() | |||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||
| self.network = network | |||
| def construct(self, x1, x2, sens, weight): | |||
| gout = self.grad(self.network)(x1, x2, sens, weight) | |||
| return gout | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_binary_cross_entropy_loss_grad(): | |||
| np.random.seed(42) | |||
| prediction = np.random.rand(20).astype(np.float32) | |||
| target = np.random.rand(20).astype(np.float32) | |||
| sens = np.random.rand(20).astype(np.float32) | |||
| weight = np.random.rand(20).astype(np.float32) | |||
| reduction = "none" | |||
| grad = Grad(Net(reduction)) | |||
| dx = grad(Tensor(prediction), Tensor(target), Tensor(sens), Tensor(weight)) | |||
| dx1_expect = [-4.80516590e-02, 2.32625079e+00, 6.38972521e-02, 3.13642323e-01, | |||
| -1.65661633e-01, -1.71821892e+00, -1.13685496e-01, 1.26669514e+00, | |||
| 1.47891801e-03, 5.83921909e-01, -2.17992840e+01, 4.21899414e+00, | |||
| 2.85430793e-02, -3.21346498e+00, -2.22674108e+00, -2.80453944e+00, | |||
| -1.19787852e-04, 2.48514321e-02, -1.66696273e-02, -2.71965731e-02] | |||
| assert np.allclose(dx[0].asnumpy(), dx1_expect) | |||