From: @zhangzhewei01 Reviewed-by: Signed-off-by:tags/v1.2.0-rc1
| @@ -0,0 +1,100 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/cpu/binary_cross_entropy_cpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| void BinaryCrossEntropyCpuKernel::LaunchToScalar(const int &input_size, const int &reduction, T *loss, T *tmp_loss) { | |||||
| if (input_size % 2 == 1) { | |||||
| tmp_loss[0] += tmp_loss[input_size - 1]; | |||||
| } | |||||
| for (int stride = input_size / 2; stride > 0; stride >>= 1) { | |||||
| for (int i = 0; i < stride; i++) { | |||||
| tmp_loss[i] += tmp_loss[i + stride]; | |||||
| } | |||||
| if (stride > 2 && stride % 2 == 1) { | |||||
| tmp_loss[0] += tmp_loss[stride - 1]; | |||||
| } | |||||
| } | |||||
| loss[0] += tmp_loss[0]; | |||||
| if (reduction == 1) { | |||||
| loss[0] /= static_cast<T>(input_size); | |||||
| } | |||||
| } | |||||
| template <typename T> | |||||
| void BinaryCrossEntropyCpuKernel::Launchkernel(const std::vector<AddressPtr> &inputs, | |||||
| const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) { | |||||
| T *input_x = reinterpret_cast<T *>(inputs[0]->addr); | |||||
| T *input_y = reinterpret_cast<T *>(inputs[1]->addr); | |||||
| T *weight = reinterpret_cast<T *>(inputs[2]->addr); | |||||
| T *loss = reinterpret_cast<T *>(outputs[0]->addr); | |||||
| std::vector<T> tmp_loss(input_size_); | |||||
| T epsilon = static_cast<T>(1e-12); | |||||
| T one = static_cast<T>(1); | |||||
| if (reduction_ == 0) { | |||||
| for (size_t i = 0; i < input_size_; i++) { | |||||
| T value = | |||||
| -weight[i] * (input_y[i] * log(input_x[i] + epsilon) + (one - input_y[i]) * log(one - input_x[i] + epsilon)); | |||||
| loss[i] = value; | |||||
| } | |||||
| } else { | |||||
| for (size_t i = 0; i < input_size_; i++) { | |||||
| T value = | |||||
| -weight[i] * (input_y[i] * log(input_x[i] + epsilon) + (one - input_y[i]) * log(one - input_x[i] + epsilon)); | |||||
| tmp_loss[i] = value; | |||||
| } | |||||
| } | |||||
| if (reduction_ != 0) { | |||||
| LaunchToScalar<T>(input_size_, reduction_, loss, tmp_loss.data()); | |||||
| } | |||||
| } | |||||
| bool BinaryCrossEntropyCpuKernel::Launch(const std::vector<AddressPtr> &inputs, | |||||
| const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) { | |||||
| if (input_size_ > 0) { | |||||
| if (dtype_ == kNumberTypeFloat32) { | |||||
| Launchkernel<float>(inputs, workspace, outputs); | |||||
| } else if (dtype_ == kNumberTypeFloat16) { | |||||
| Launchkernel<float16>(inputs, workspace, outputs); | |||||
| } | |||||
| } | |||||
| return true; | |||||
| } | |||||
| void BinaryCrossEntropyCpuKernel::InitKernel(const CNodePtr &kernel_node) { | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||||
| input_size_ *= input_shape[i]; | |||||
| } | |||||
| string reduction = AnfAlgo::GetNodeAttr<string>(kernel_node, "reduction"); | |||||
| if (reduction == "none") { | |||||
| reduction_ = 0; | |||||
| } else if (reduction == "sum") { | |||||
| reduction_ = 2; | |||||
| } | |||||
| dtype_ = AnfAlgo::GetInputDeviceDataType(kernel_node, 0); | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,62 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H | |||||
| #include <vector> | |||||
| #include <string> | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| class BinaryCrossEntropyCpuKernel : public CPUKernel { | |||||
| public: | |||||
| BinaryCrossEntropyCpuKernel() : input_size_(1), reduction_(1) {} | |||||
| ~BinaryCrossEntropyCpuKernel() override = default; | |||||
| void InitKernel(const CNodePtr &kernel_node) override; | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) override; | |||||
| private: | |||||
| template <typename T> | |||||
| void LaunchToScalar(const int &input_size, const int &reduction, T *loss, T *tmp_loss); | |||||
| template <typename T> | |||||
| void Launchkernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs); | |||||
| TypeId dtype_{kTypeUnknown}; | |||||
| size_t input_size_; | |||||
| int reduction_; | |||||
| }; | |||||
| MS_REG_CPU_KERNEL(BinaryCrossEntropy, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddOutputAttr(kNumberTypeFloat16), | |||||
| BinaryCrossEntropyCpuKernel); | |||||
| MS_REG_CPU_KERNEL(BinaryCrossEntropy, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddOutputAttr(kNumberTypeFloat32), | |||||
| BinaryCrossEntropyCpuKernel); | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H | |||||
| @@ -0,0 +1,78 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/cpu/binary_cross_entropy_grad_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| void BinaryCrossEntropyGradCpuKernel::Launchkernel(const std::vector<AddressPtr> &inputs, | |||||
| const std::vector<AddressPtr> &outputs) { | |||||
| T *input_x = reinterpret_cast<T *>(inputs[0]->addr); | |||||
| T *input_y = reinterpret_cast<T *>(inputs[1]->addr); | |||||
| T *dloss = reinterpret_cast<T *>(inputs[2]->addr); | |||||
| T *weight = reinterpret_cast<T *>(inputs[3]->addr); | |||||
| T *dx = reinterpret_cast<T *>(outputs[0]->addr); | |||||
| T epsilon = static_cast<T>(1e-12); | |||||
| T one = static_cast<T>(1); | |||||
| if (reduction_ == 0) { | |||||
| for (size_t i = 0; i < input_size_; i++) { | |||||
| T denominator = ((input_x[i] * (one - input_x[i])) > epsilon) ? (input_x[i] * (one - input_x[i])) : epsilon; | |||||
| T value = weight[i] * (input_x[i] - input_y[i]) / denominator; | |||||
| dx[i] = value * dloss[i]; | |||||
| } | |||||
| } else { | |||||
| T dloss1 = dloss[0]; | |||||
| if (reduction_ == 1) { | |||||
| dloss1 = dloss[0] / static_cast<T>(input_size_); | |||||
| } | |||||
| for (size_t i = 0; i < input_size_; i++) { | |||||
| T denominator = ((input_x[i] * (one - input_x[i])) > epsilon) ? (input_x[i] * (one - input_x[i])) : epsilon; | |||||
| T value = weight[i] * (input_x[i] - input_y[i]) / denominator; | |||||
| dx[i] = value * dloss1; | |||||
| } | |||||
| } | |||||
| } | |||||
| bool BinaryCrossEntropyGradCpuKernel::Launch(const std::vector<AddressPtr> &inputs, | |||||
| const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) { | |||||
| if (input_size_ > 0) { | |||||
| if (dtype_ == kNumberTypeFloat32) { | |||||
| Launchkernel<float>(inputs, outputs); | |||||
| } else if (dtype_ == kNumberTypeFloat16) { | |||||
| Launchkernel<float16>(inputs, outputs); | |||||
| } | |||||
| } | |||||
| return true; | |||||
| } | |||||
| void BinaryCrossEntropyGradCpuKernel::InitKernel(const CNodePtr &kernel_node) { | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||||
| input_size_ *= input_shape[i]; | |||||
| } | |||||
| string reduction = AnfAlgo::GetNodeAttr<string>(kernel_node, "reduction"); | |||||
| if (reduction == "none") { | |||||
| reduction_ = 0; | |||||
| } else if (reduction == "sum") { | |||||
| reduction_ = 2; | |||||
| } | |||||
| dtype_ = AnfAlgo::GetInputDeviceDataType(kernel_node, 0); | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,61 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H | |||||
| #include <vector> | |||||
| #include <string> | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| class BinaryCrossEntropyGradCpuKernel : public CPUKernel { | |||||
| public: | |||||
| BinaryCrossEntropyGradCpuKernel() : input_size_(1), reduction_(1) {} | |||||
| ~BinaryCrossEntropyGradCpuKernel() override = default; | |||||
| void InitKernel(const CNodePtr &kernel_node) override; | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) override; | |||||
| private: | |||||
| template <typename T> | |||||
| void Launchkernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||||
| TypeId dtype_{kTypeUnknown}; | |||||
| size_t input_size_; | |||||
| int reduction_; | |||||
| }; | |||||
| MS_REG_CPU_KERNEL(BinaryCrossEntropyGrad, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddOutputAttr(kNumberTypeFloat16), | |||||
| BinaryCrossEntropyGradCpuKernel); | |||||
| MS_REG_CPU_KERNEL(BinaryCrossEntropyGrad, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddOutputAttr(kNumberTypeFloat32), | |||||
| BinaryCrossEntropyGradCpuKernel); | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H | |||||
| @@ -4619,7 +4619,7 @@ class BinaryCrossEntropy(PrimitiveWithInfer): | |||||
| Otherwise, the output is a scalar. | Otherwise, the output is a scalar. | ||||
| Supported Platforms: | Supported Platforms: | ||||
| ``Ascend`` ``GPU`` | |||||
| ``Ascend`` ``GPU`` ``CPU`` | |||||
| Examples: | Examples: | ||||
| >>> import mindspore | >>> import mindspore | ||||
| @@ -0,0 +1,141 @@ | |||||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import pytest | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import composite as C | |||||
| from mindspore.ops import operations as P | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, reduction="none"): | |||||
| super(Net, self).__init__() | |||||
| self.BinaryCrossEntropy = P.BinaryCrossEntropy(reduction) | |||||
| def construct(self, x, y, weight): | |||||
| return self.BinaryCrossEntropy(x, y, weight) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu | |||||
| @pytest.mark.env_onecard | |||||
| def test_binary_cross_entropy_loss(): | |||||
| np.random.seed(42) | |||||
| prediction = np.random.rand(20).astype(np.float32) | |||||
| target = np.random.rand(20).astype(np.float32) | |||||
| weight = np.random.rand(20).astype(np.float32) | |||||
| reduction = "none" | |||||
| net = Net(reduction) | |||||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||||
| expect = [0.09555826, 1.2861121, 0.03518666, 0.6969416, 0.24313456, 0.99062896, | |||||
| 0.19205657, 0.5465214, 0.36964455, 0.21999404, 2.2953863, 2.2566645, | |||||
| 1.5803775, 1.3266402, 0.9883408, 1.2997618, 0.05439841, 0.14389999, | |||||
| 0.03405444, 0.23934692] | |||||
| assert np.allclose(loss.asnumpy(), expect) | |||||
| def test_binary_cross_entropy_loss_mean(): | |||||
| np.random.seed(42) | |||||
| prediction = np.random.rand(20).astype(np.float32) | |||||
| target = np.random.rand(20).astype(np.float32) | |||||
| weight = np.random.rand(20).astype(np.float32) | |||||
| reduction = "mean" | |||||
| net = Net(reduction) | |||||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||||
| expect = [0.7447324991226196] | |||||
| assert loss.asnumpy() == expect | |||||
| def test_binary_cross_entropy_loss_sum(): | |||||
| np.random.seed(42) | |||||
| prediction = np.random.rand(20).astype(np.float32) | |||||
| target = np.random.rand(20).astype(np.float32) | |||||
| weight = np.random.rand(20).astype(np.float32) | |||||
| reduction = "sum" | |||||
| net = Net(reduction) | |||||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||||
| expect = [14.894649505615234] | |||||
| assert loss.asnumpy() == expect | |||||
| def test_binary_cross_entropy_loss_16(): | |||||
| np.random.seed(42) | |||||
| prediction = np.random.rand(20).astype(np.float16) | |||||
| target = np.random.rand(20).astype(np.float16) | |||||
| weight = np.random.rand(20).astype(np.float16) | |||||
| reduction = "none" | |||||
| net = Net(reduction) | |||||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||||
| expect = [0.09552, 1.28613, 0.0351868, 0.696777, 0.243164, 0.990234, | |||||
| 0.192139, 0.546875, 0.370117, 0.219971, 2.29492, 2.25391, | |||||
| 1.58105, 1.32812, 0.987305, 1.30078, 0.0544434, 0.143921, | |||||
| 0.0340576, 0.239258] | |||||
| assert np.allclose(loss.asnumpy(), expect) | |||||
| def test_binary_cross_entropy_loss_mean_16(): | |||||
| np.random.seed(42) | |||||
| prediction = np.random.rand(20).astype(np.float16) | |||||
| target = np.random.rand(20).astype(np.float16) | |||||
| weight = np.random.rand(20).astype(np.float16) | |||||
| reduction = "mean" | |||||
| net = Net(reduction) | |||||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||||
| expect = [0.74462890625] | |||||
| assert loss.asnumpy() == expect | |||||
| def test_binary_cross_entropy_loss_sum_16(): | |||||
| np.random.seed(42) | |||||
| prediction = np.random.rand(20).astype(np.float16) | |||||
| target = np.random.rand(20).astype(np.float16) | |||||
| weight = np.random.rand(20).astype(np.float16) | |||||
| reduction = "sum" | |||||
| net = Net(reduction) | |||||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||||
| expect = [14.890625] | |||||
| assert loss.asnumpy() == expect | |||||
| class Grad(nn.Cell): | |||||
| def __init__(self, network): | |||||
| super(Grad, self).__init__() | |||||
| self.grad = C.GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | |||||
| def construct(self, x1, x2, sens, weight): | |||||
| gout = self.grad(self.network)(x1, x2, sens, weight) | |||||
| return gout | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu | |||||
| @pytest.mark.env_onecard | |||||
| def test_binary_cross_entropy_loss_grad(): | |||||
| np.random.seed(42) | |||||
| prediction = np.random.rand(20).astype(np.float32) | |||||
| target = np.random.rand(20).astype(np.float32) | |||||
| sens = np.random.rand(20).astype(np.float32) | |||||
| weight = np.random.rand(20).astype(np.float32) | |||||
| reduction = "none" | |||||
| grad = Grad(Net(reduction)) | |||||
| dx = grad(Tensor(prediction), Tensor(target), Tensor(sens), Tensor(weight)) | |||||
| dx1_expect = [-4.80516590e-02, 2.32625079e+00, 6.38972521e-02, 3.13642323e-01, | |||||
| -1.65661633e-01, -1.71821892e+00, -1.13685496e-01, 1.26669514e+00, | |||||
| 1.47891801e-03, 5.83921909e-01, -2.17992840e+01, 4.21899414e+00, | |||||
| 2.85430793e-02, -3.21346498e+00, -2.22674108e+00, -2.80453944e+00, | |||||
| -1.19787852e-04, 2.48514321e-02, -1.66696273e-02, -2.71965731e-02] | |||||
| assert np.allclose(dx[0].asnumpy(), dx1_expect) | |||||