| @@ -24,17 +24,20 @@ namespace kernel { | |||
| void LstmCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||
| std::vector<size_t> src_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0); | |||
| std::vector<size_t> src_h_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 1); | |||
| bidirectional_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "bidirectional"); | |||
| input_size_ = AnfAlgo::GetNodeAttr<int>(kernel_node, "input_size"); | |||
| hidden_size_ = AnfAlgo::GetNodeAttr<int>(kernel_node, "hidden_size"); | |||
| num_layers_ = AnfAlgo::GetNodeAttr<int>(kernel_node, "num_layers"); | |||
| has_bias_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "has_bias"); | |||
| batch_size_ = SizeToInt(src_shape[1]); | |||
| seq_len_ = SizeToInt(src_shape[0]); | |||
| num_directions_ = 1; | |||
| if (bidirectional_) { | |||
| num_directions_ = 2; | |||
| } | |||
| int gate_size = 4 * hidden_size_; | |||
| if (num_directions_ * num_layers_ != SizeToInt(src_h_shape[0])) MS_LOG(EXCEPTION) << "error iteration shape!"; | |||
| const int gate_size = 4 * hidden_size_; | |||
| for (int i = 0; i < num_layers_; ++i) { | |||
| weight_size_ += gate_size * (i == 0 ? input_size_ : hidden_size_ * num_directions_); | |||
| weight_h_size_ += gate_size * hidden_size_; | |||
| @@ -52,11 +55,11 @@ bool LstmCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| auto eng = MKLKernelEngine::Get().engine(); | |||
| dnnl::stream s(eng); | |||
| auto formatted_md = [](dim dimensions, tag layout) { return dnnl::memory::desc{{dimensions}, dt::f32, layout}; }; | |||
| auto generic_md = [](dim dimensions) { return dnnl::memory::desc{{dimensions}, dt::f32, tag::any}; }; | |||
| dnnl::rnn_direction direction = dnnl::rnn_direction::unidirectional; | |||
| if (bidirectional_) { | |||
| direction = dnnl::rnn_direction::bidirectional_concat; | |||
| } | |||
| dim src_dims = {seq_len_, batch_size_, input_size_}; | |||
| dim src_h_dims = {num_layers_, num_directions_, batch_size_, hidden_size_}; | |||
| dim src_c_dims = {num_layers_, num_directions_, batch_size_, hidden_size_}; | |||
| @@ -69,35 +72,43 @@ bool LstmCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| dnnl::memory::desc src_desc = formatted_md(src_dims, tag::tnc); | |||
| dnnl::memory::desc src_h_desc = formatted_md(src_h_dims, tag::ldnc); | |||
| dnnl::memory::desc src_c_desc = formatted_md(src_c_dims, tag::ldnc); | |||
| dnnl::memory::desc weights_desc = formatted_md(weights_dims, tag::ldigo); | |||
| dnnl::memory::desc weights_h_desc = formatted_md(weights_h_dims, tag::ldigo); | |||
| dnnl::memory::desc bias_desc = formatted_md(bias_dims, tag::ldgo); | |||
| dnnl::memory::desc dst_desc = formatted_md(dst_dims, tag::tnc); | |||
| dnnl::memory::desc dst_h_desc = formatted_md(dst_h_dims, tag::ldnc); | |||
| dnnl::memory::desc dst_c_desc = formatted_md(dst_c_dims, tag::ldnc); | |||
| dnnl::lstm_forward::desc desc = | |||
| dnnl::lstm_forward::desc(dnnl::prop_kind::forward_training, direction, src_desc, src_h_desc, src_c_desc, | |||
| weights_desc, weights_h_desc, bias_desc, dst_desc, dst_h_desc, dst_c_desc); | |||
| dnnl::lstm_forward::desc desc = dnnl::lstm_forward::desc( | |||
| dnnl::prop_kind::forward_training, direction, src_desc, src_h_desc, src_c_desc, generic_md(weights_dims), | |||
| generic_md(weights_h_dims), generic_md(bias_dims), dst_desc, dst_h_desc, dst_c_desc); | |||
| auto prim_desc = dnnl::lstm_forward::primitive_desc(desc, MKLKernelEngine::Get().engine()); | |||
| // construct fw memory | |||
| auto workspace_memory = dnnl::memory(prim_desc.workspace_desc(), eng); | |||
| auto src_memory = dnnl::memory(formatted_md(src_dims, tag::tnc), eng); | |||
| write_to_dnnl_memory(inputs[0]->addr, src_memory); | |||
| auto src_h_memory = dnnl::memory(prim_desc.src_iter_desc(), eng); | |||
| auto src_c_memory = dnnl::memory(prim_desc.src_iter_c_desc(), eng); | |||
| write_to_dnnl_memory(inputs[1]->addr, src_h_memory); | |||
| write_to_dnnl_memory(inputs[2]->addr, src_c_memory); | |||
| auto weights_memory = dnnl::memory(formatted_md(weights_dims, tag::ldigo), eng); | |||
| auto weights_h_memory = dnnl::memory(formatted_md(weights_h_dims, tag::ldigo), eng); | |||
| auto bias_memory = dnnl::memory(formatted_md(bias_dims, tag::ldgo), eng); | |||
| write_to_dnnl_memory(inputs[3]->addr, weights_memory); | |||
| write_to_dnnl_memory(reinterpret_cast<float *>(inputs[3]->addr) + weight_size_, weights_h_memory); | |||
| write_to_dnnl_memory(reinterpret_cast<float *>(inputs[3]->addr) + weight_size_ + weight_h_size_, bias_memory); | |||
| src_memory.set_data_handle(inputs[0]->addr); | |||
| auto src_h_memory = dnnl::memory(formatted_md(src_h_dims, tag::ldnc), eng); | |||
| auto src_c_memory = dnnl::memory(formatted_md(src_c_dims, tag::ldnc), eng); | |||
| src_h_memory.set_data_handle(inputs[1]->addr); | |||
| src_c_memory.set_data_handle(inputs[2]->addr); | |||
| auto user_weights_memory = dnnl::memory(formatted_md(weights_dims, tag::ldgoi), eng); | |||
| auto user_weights_h_memory = dnnl::memory(formatted_md(weights_h_dims, tag::ldgoi), eng); | |||
| user_weights_memory.set_data_handle(inputs[3]->addr); | |||
| user_weights_h_memory.set_data_handle(reinterpret_cast<float *>(inputs[3]->addr) + weight_size_); | |||
| auto weights_memory = dnnl::memory(prim_desc.weights_layer_desc(), eng); | |||
| auto weights_h_memory = dnnl::memory(prim_desc.weights_iter_desc(), eng); | |||
| dnnl::reorder(user_weights_memory, weights_memory).execute(s, user_weights_memory, weights_memory); | |||
| dnnl::reorder(user_weights_h_memory, weights_h_memory).execute(s, user_weights_h_memory, weights_h_memory); | |||
| auto bias_memory = dnnl::memory(prim_desc.bias_desc(), eng); | |||
| if (has_bias_) { | |||
| auto user_bias_memory = dnnl::memory(formatted_md(bias_dims, tag::ldgo), eng); | |||
| user_bias_memory.set_data_handle(reinterpret_cast<float *>(inputs[3]->addr) + weight_size_ + weight_h_size_); | |||
| dnnl::reorder(user_bias_memory, bias_memory).execute(s, user_bias_memory, bias_memory); | |||
| } else { | |||
| std::vector<float> net_bias(bias_memory.get_desc().get_size(), 0.0f); | |||
| write_to_dnnl_memory(net_bias.data(), bias_memory); | |||
| } | |||
| auto dst_memory = dnnl::memory(formatted_md(dst_dims, tag::tnc), eng); | |||
| auto dst_h_memory = dnnl::memory(prim_desc.dst_iter_desc(), eng); | |||
| auto dst_c_memory = dnnl::memory(prim_desc.dst_iter_c_desc(), eng); | |||
| auto dst_h_memory = dnnl::memory(formatted_md(dst_h_dims, tag::ldnc), eng); | |||
| auto dst_c_memory = dnnl::memory(formatted_md(dst_c_dims, tag::ldnc), eng); | |||
| dnnl::lstm_forward fw_layer(prim_desc); | |||
| workspace_memory.set_data_handle(outputs[3]->addr); | |||
| dst_memory.set_data_handle(outputs[0]->addr); | |||
| @@ -113,8 +124,8 @@ bool LstmCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| {DNNL_ARG_DST_ITER, dst_h_memory}, | |||
| {DNNL_ARG_DST_ITER_C, dst_c_memory}, | |||
| {DNNL_ARG_WORKSPACE, workspace_memory}}); | |||
| s.wait(); | |||
| return true; | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -40,6 +40,7 @@ class LstmCPUKernel : public MKLCPUKernel { | |||
| int seq_len_; | |||
| int num_directions_; | |||
| bool bidirectional_; | |||
| bool has_bias_; | |||
| }; | |||
| MS_REG_CPU_KERNEL(LSTM, | |||
| @@ -28,17 +28,20 @@ namespace kernel { | |||
| void LSTMGradCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||
| std::vector<size_t> src_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0); | |||
| std::vector<size_t> src_h_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 1); | |||
| bidirectional_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "bidirectional"); | |||
| input_size_ = AnfAlgo::GetNodeAttr<int>(kernel_node, "input_size"); | |||
| hidden_size_ = AnfAlgo::GetNodeAttr<int>(kernel_node, "hidden_size"); | |||
| num_layers_ = AnfAlgo::GetNodeAttr<int>(kernel_node, "num_layers"); | |||
| has_bias_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "has_bias"); | |||
| batch_size_ = SizeToInt(src_shape[1]); | |||
| seq_len_ = SizeToInt(src_shape[0]); | |||
| num_directions_ = 1; | |||
| if (bidirectional_) { | |||
| num_directions_ = 2; | |||
| } | |||
| int gate_size = 4 * hidden_size_; | |||
| if (num_directions_ * num_layers_ != SizeToInt(src_h_shape[0])) MS_LOG(EXCEPTION) << "error iteration shape!"; | |||
| const int gate_size = 4 * hidden_size_; | |||
| for (int i = 0; i < num_layers_; ++i) { | |||
| weight_size_ += gate_size * (i == 0 ? input_size_ : hidden_size_ * num_directions_); | |||
| weight_h_size_ += gate_size * hidden_size_; | |||
| @@ -70,79 +73,92 @@ bool LSTMGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| dim dst_dims = {seq_len_, batch_size_, hidden_size_ * num_directions_}; | |||
| dim dst_h_dims = {num_layers_, num_directions_, batch_size_, hidden_size_}; | |||
| dim dst_c_dims = {num_layers_, num_directions_, batch_size_, hidden_size_}; | |||
| dnnl::memory::desc src_desc = formatted_md(src_dims, tag::tnc); | |||
| dnnl::memory::desc src_h_desc = formatted_md(src_h_dims, tag::ldnc); | |||
| dnnl::memory::desc src_c_desc = formatted_md(src_c_dims, tag::ldnc); | |||
| dnnl::memory::desc weights_desc = formatted_md(weights_dims, tag::ldigo); | |||
| dnnl::memory::desc weights_h_desc = formatted_md(weights_h_dims, tag::ldigo); | |||
| dnnl::memory::desc bias_desc = formatted_md(bias_dims, tag::ldgo); | |||
| dnnl::memory::desc dst_desc = formatted_md(dst_dims, tag::tnc); | |||
| dnnl::memory::desc dst_h_desc = formatted_md(dst_h_dims, tag::ldnc); | |||
| dnnl::memory::desc dst_c_desc = formatted_md(dst_c_dims, tag::ldnc); | |||
| dnnl::lstm_forward::desc forward_desc = | |||
| dnnl::lstm_forward::desc(dnnl::prop_kind::forward_training, direction, src_desc, src_h_desc, src_c_desc, | |||
| weights_desc, weights_h_desc, bias_desc, dst_desc, dst_h_desc, dst_c_desc); | |||
| dnnl::lstm_forward::desc forward_desc = dnnl::lstm_forward::desc( | |||
| dnnl::prop_kind::forward_training, direction, src_desc, src_h_desc, src_c_desc, generic_md(weights_dims), | |||
| generic_md(weights_h_dims), generic_md(bias_dims), dst_desc, dst_h_desc, dst_c_desc); | |||
| auto prim_forward_desc = dnnl::lstm_forward::primitive_desc(forward_desc, eng); | |||
| dnnl::lstm_backward::desc backward_desc = dnnl::lstm_backward::desc( | |||
| dnnl::prop_kind::backward, direction, src_desc, src_h_desc, src_c_desc, generic_md(weights_dims), | |||
| generic_md(weights_h_dims), generic_md(bias_dims), dst_desc, dst_h_desc, dst_c_desc, src_desc, src_h_desc, | |||
| src_c_desc, weights_desc, weights_h_desc, bias_desc, dst_desc, dst_h_desc, dst_c_desc); | |||
| dnnl::lstm_backward::desc backward_desc = | |||
| dnnl::lstm_backward::desc(dnnl::prop_kind::backward, direction, src_desc, src_h_desc, src_c_desc, | |||
| generic_md(weights_dims), generic_md(weights_h_dims), generic_md(bias_dims), dst_desc, | |||
| dst_h_desc, dst_c_desc, src_desc, src_h_desc, src_c_desc, generic_md(weights_dims), | |||
| generic_md(weights_h_dims), generic_md(bias_dims), dst_desc, dst_h_desc, dst_c_desc); | |||
| auto prim_backward_desc = dnnl::lstm_backward::primitive_desc(backward_desc, eng, prim_forward_desc); | |||
| // construct fw memory | |||
| auto src_memory = dnnl::memory(formatted_md(src_dims, tag::tnc), eng); | |||
| write_to_dnnl_memory(inputs[0]->addr, src_memory); | |||
| auto src_h_memory = dnnl::memory(prim_forward_desc.src_iter_desc(), eng); | |||
| auto src_c_memory = dnnl::memory(prim_forward_desc.src_iter_c_desc(), eng); | |||
| write_to_dnnl_memory(inputs[1]->addr, src_h_memory); | |||
| write_to_dnnl_memory(inputs[2]->addr, src_c_memory); | |||
| auto user_weights_memory = dnnl::memory(formatted_md(weights_dims, tag::ldigo), eng); | |||
| auto user_weights_h_memory = dnnl::memory(formatted_md(weights_h_dims, tag::ldigo), eng); | |||
| auto user_bias_memory = dnnl::memory(formatted_md(bias_dims, tag::ldgo), eng); | |||
| write_to_dnnl_memory(inputs[3]->addr, user_weights_memory); | |||
| write_to_dnnl_memory(reinterpret_cast<float *>(inputs[3]->addr) + weight_size_, user_weights_h_memory); | |||
| write_to_dnnl_memory(reinterpret_cast<float *>(inputs[3]->addr) + weight_size_ + weight_h_size_, user_bias_memory); | |||
| src_memory.set_data_handle(inputs[0]->addr); | |||
| auto src_h_memory = dnnl::memory(formatted_md(src_h_dims, tag::ldnc), eng); | |||
| auto src_c_memory = dnnl::memory(formatted_md(src_c_dims, tag::ldnc), eng); | |||
| src_h_memory.set_data_handle(inputs[1]->addr); | |||
| src_c_memory.set_data_handle(inputs[2]->addr); | |||
| auto user_weights_memory = dnnl::memory(formatted_md(weights_dims, tag::ldgoi), eng); | |||
| auto user_weights_h_memory = dnnl::memory(formatted_md(weights_h_dims, tag::ldgoi), eng); | |||
| user_weights_memory.set_data_handle(inputs[3]->addr); | |||
| user_weights_h_memory.set_data_handle(reinterpret_cast<float *>(inputs[3]->addr) + weight_size_); | |||
| auto weights_memory = dnnl::memory(prim_backward_desc.weights_layer_desc(), eng); | |||
| auto weights_h_memory = dnnl::memory(prim_backward_desc.weights_iter_desc(), eng); | |||
| auto bias_memory = dnnl::memory(prim_forward_desc.bias_desc(), eng); | |||
| dnnl::reorder(user_weights_memory, weights_memory).execute(s, user_weights_memory, weights_memory); | |||
| dnnl::reorder(user_weights_h_memory, weights_h_memory).execute(s, user_weights_h_memory, weights_h_memory); | |||
| dnnl::reorder(user_bias_memory, bias_memory).execute(s, user_bias_memory, bias_memory); | |||
| // construct bias memory | |||
| auto bias_memory = dnnl::memory(prim_backward_desc.bias_desc(), eng); | |||
| if (has_bias_) { | |||
| auto user_bias_memory = dnnl::memory(formatted_md(bias_dims, tag::ldgo), eng); | |||
| user_bias_memory.set_data_handle(reinterpret_cast<float *>(inputs[3]->addr) + weight_size_ + weight_h_size_); | |||
| dnnl::reorder(user_bias_memory, bias_memory).execute(s, user_bias_memory, bias_memory); | |||
| } else { | |||
| std::vector<float> net_bias(bias_memory.get_desc().get_size(), 0.0f); | |||
| write_to_dnnl_memory(net_bias.data(), bias_memory); | |||
| } | |||
| auto dst_memory = dnnl::memory(formatted_md(dst_dims, tag::tnc), eng); | |||
| write_to_dnnl_memory(reinterpret_cast<float *>(inputs[4]->addr), dst_memory); | |||
| auto dst_h_memory = dnnl::memory(prim_backward_desc.dst_iter_desc(), eng); | |||
| write_to_dnnl_memory(reinterpret_cast<float *>(inputs[5]->addr), dst_h_memory); | |||
| auto dst_c_memory = dnnl::memory(prim_backward_desc.dst_iter_c_desc(), eng); | |||
| write_to_dnnl_memory(reinterpret_cast<float *>(inputs[6]->addr), dst_c_memory); | |||
| dst_memory.set_data_handle(inputs[4]->addr); | |||
| auto dst_h_memory = dnnl::memory(formatted_md(dst_h_dims, tag::ldnc), eng); | |||
| auto dst_c_memory = dnnl::memory(formatted_md(dst_c_dims, tag::ldnc), eng); | |||
| dst_h_memory.set_data_handle(inputs[5]->addr); | |||
| dst_c_memory.set_data_handle(inputs[6]->addr); | |||
| auto workspace_memory = dnnl::memory(prim_forward_desc.workspace_desc(), eng); | |||
| write_to_dnnl_memory(inputs[10]->addr, workspace_memory); | |||
| workspace_memory.set_data_handle(inputs[10]->addr); | |||
| // construct diff memory | |||
| // construct bw memory | |||
| std::vector<float> net_w(weights_memory.get_desc().get_size(), 0.0f); | |||
| std::vector<float> net_wh(weights_h_memory.get_desc().get_size(), 0.0f); | |||
| auto diff_src_memory = dnnl::memory(formatted_md(src_dims, tag::tnc), eng); | |||
| auto diff_src_h_memory = dnnl::memory(prim_backward_desc.diff_src_iter_desc(), eng); | |||
| auto diff_src_c_memory = dnnl::memory(prim_backward_desc.diff_src_iter_c_desc(), eng); | |||
| auto diff_src_h_memory = dnnl::memory(formatted_md(src_h_dims, tag::ldnc), eng); | |||
| auto diff_src_c_memory = dnnl::memory(formatted_md(src_c_dims, tag::ldnc), eng); | |||
| auto user_diff_weights_memory = dnnl::memory(formatted_md(weights_dims, tag::ldgoi), eng); | |||
| auto user_diff_weights_h_memory = dnnl::memory(formatted_md(weights_h_dims, tag::ldgoi), eng); | |||
| auto diff_weights_memory = dnnl::memory(prim_backward_desc.diff_weights_layer_desc(), eng); | |||
| auto diff_weights_h_memory = dnnl::memory(prim_backward_desc.diff_weights_iter_desc(), eng); | |||
| write_to_dnnl_memory(net_w.data(), diff_weights_memory); | |||
| write_to_dnnl_memory(net_wh.data(), diff_weights_h_memory); | |||
| auto user_diff_bias_memory = dnnl::memory(formatted_md(bias_dims, tag::ldgo), eng); | |||
| auto diff_bias_memory = dnnl::memory(prim_backward_desc.diff_bias_desc(), eng); | |||
| auto diff_dst_memory = dnnl::memory(formatted_md(dst_dims, tag::tnc), eng); | |||
| write_to_dnnl_memory(reinterpret_cast<float *>(inputs[7]->addr), diff_dst_memory); | |||
| auto diff_dst_h_memory = dnnl::memory(prim_backward_desc.diff_dst_iter_desc(), eng); | |||
| write_to_dnnl_memory(reinterpret_cast<float *>(inputs[8]->addr), diff_dst_h_memory); | |||
| auto diff_dst_c_memory = dnnl::memory(prim_backward_desc.diff_dst_iter_c_desc(), eng); | |||
| write_to_dnnl_memory(reinterpret_cast<float *>(inputs[9]->addr), diff_dst_c_memory); | |||
| write_to_dnnl_memory(net_w.data(), diff_bias_memory); | |||
| auto diff_dst_memory = dnnl::memory(formatted_md(dst_dims, tag::tnc), eng); | |||
| diff_dst_memory.set_data_handle(inputs[7]->addr); | |||
| auto diff_dst_h_memory = dnnl::memory(formatted_md(dst_h_dims, tag::ldnc), eng); | |||
| diff_dst_h_memory.set_data_handle(inputs[8]->addr); | |||
| auto diff_dst_c_memory = dnnl::memory(formatted_md(dst_c_dims, tag::ldnc), eng); | |||
| diff_dst_c_memory.set_data_handle(inputs[9]->addr); | |||
| diff_src_memory.set_data_handle(outputs[0]->addr); | |||
| diff_src_h_memory.set_data_handle(outputs[1]->addr); | |||
| diff_src_c_memory.set_data_handle(outputs[2]->addr); | |||
| diff_weights_memory.set_data_handle(outputs[3]->addr); | |||
| diff_weights_h_memory.set_data_handle(reinterpret_cast<float *>(outputs[3]->addr) + weight_size_); | |||
| diff_bias_memory.set_data_handle(reinterpret_cast<float *>(outputs[3]->addr) + weight_size_ + weight_h_size_); | |||
| user_diff_weights_memory.set_data_handle(outputs[3]->addr); | |||
| user_diff_weights_h_memory.set_data_handle(reinterpret_cast<float *>(outputs[3]->addr) + weight_size_); | |||
| write_to_dnnl_memory(net_w.data(), user_diff_weights_memory); | |||
| write_to_dnnl_memory(net_wh.data(), user_diff_weights_h_memory); | |||
| // construct bw bias memory | |||
| user_diff_bias_memory.set_data_handle(reinterpret_cast<float *>(outputs[3]->addr) + weight_size_ + weight_h_size_); | |||
| write_to_dnnl_memory(net_w.data(), user_diff_bias_memory); | |||
| dnnl::lstm_backward bwd_layer(prim_backward_desc); | |||
| bwd_layer.execute(s, {{DNNL_ARG_SRC_LAYER, src_memory}, | |||
| {DNNL_ARG_SRC_ITER, src_h_memory}, | |||
| @@ -163,6 +179,16 @@ bool LSTMGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| {DNNL_ARG_DIFF_DST_ITER, diff_dst_h_memory}, | |||
| {DNNL_ARG_DIFF_DST_ITER_C, diff_dst_c_memory}, | |||
| {DNNL_ARG_WORKSPACE, workspace_memory}}); | |||
| dnnl::reorder(diff_weights_memory, user_diff_weights_memory) | |||
| .execute(s, diff_weights_memory, user_diff_weights_memory); | |||
| dnnl::reorder(diff_weights_h_memory, user_diff_weights_h_memory) | |||
| .execute(s, diff_weights_h_memory, user_diff_weights_h_memory); | |||
| if (has_bias_) { | |||
| dnnl::reorder(diff_bias_memory, user_diff_bias_memory).execute(s, diff_bias_memory, user_diff_bias_memory); | |||
| } else { | |||
| write_to_dnnl_memory(net_w.data(), user_diff_bias_memory); | |||
| } | |||
| s.wait(); | |||
| return true; | |||
| } | |||
| } // namespace kernel | |||
| @@ -41,6 +41,7 @@ class LSTMGradCPUKernel : public MKLCPUKernel { | |||
| int seq_len_; | |||
| int num_directions_; | |||
| bool bidirectional_; | |||
| bool has_bias_; | |||
| }; | |||
| MS_REG_CPU_KERNEL(LSTMGrad, | |||
| @@ -15,7 +15,7 @@ | |||
| """lstm""" | |||
| from mindspore.ops import operations as P | |||
| from mindspore.nn.cell import Cell | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.common.parameter import Parameter, ParameterTuple | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore._checkparam import Validator as validator | |||
| from mindspore import context | |||
| @@ -149,21 +149,28 @@ class LSTM(Cell): | |||
| weight_size += increment_size * num_directions | |||
| self.weight = Parameter(initializer(0.0, [weight_size, 1, 1]), name='weight') | |||
| else: | |||
| layer = [] | |||
| layer.append(nn.LSTMCell(input_size=self.input_size, | |||
| hidden_size=self.hidden_size, | |||
| layer_index=0, | |||
| has_bias=self.has_bias, | |||
| bidirectional=self.bidirectional, | |||
| dropout=self.dropout)) | |||
| for i in range(num_layers - 1): | |||
| layer.append(nn.LSTMCell(input_size=self.hidden_size * num_directions, | |||
| hidden_size=self.hidden_size, | |||
| layer_index=i + 1, | |||
| has_bias=self.has_bias, | |||
| bidirectional=self.bidirectional, | |||
| dropout=self.dropout)) | |||
| self.lstms = layer | |||
| input_size_list = [] | |||
| input_size_list.append(self.input_size) | |||
| for i in range(self.num_layers - 1): | |||
| input_size_list.append(self.hidden_size * num_directions) | |||
| weights = [] | |||
| layers = [] | |||
| bias_size = 0 if not self.has_bias else num_directions * self.hidden_size * 4 | |||
| for i in range(num_layers): | |||
| weight_size = (input_size_list[i] + self.hidden_size) * num_directions * self.hidden_size * 4 | |||
| w_np = np.ones([weight_size, 1, 1]).astype(np.float32) * 0.01 | |||
| if has_bias: | |||
| bias_np = np.zeros([bias_size, 1, 1]).astype(np.float32) | |||
| w_np = np.concatenate([w_np, bias_np], axis=0) | |||
| weights.append(Parameter(initializer(Tensor(w_np), w_np.shape), name='weight' + str(i))) | |||
| layers.append(nn.LSTMCell(input_size=input_size_list[i], | |||
| hidden_size=self.hidden_size, | |||
| has_bias=self.has_bias, | |||
| bidirectional=self.bidirectional, | |||
| dropout=self.dropout)) | |||
| self.lstms = layers | |||
| self.weight = ParameterTuple(tuple(weights)) | |||
| self.fill = P.Fill() | |||
| self.shape = P.Shape() | |||
| @@ -177,12 +184,12 @@ class LSTM(Cell): | |||
| output = self.transpose2(output, (1, 0, 2)) | |||
| return (output, (h, c)) | |||
| h, c = hx | |||
| output, hn, cn, _, _ = self.lstms[0](x, h[0], c[0]) | |||
| output, hn, cn, _, _ = self.lstms[0](x, h[0], c[0], self.weight[0]) | |||
| for i in range(1, self.num_layers): | |||
| output, hn, cn, _, _ = self.lstms[i](output, h[i], c[i]) | |||
| output, hn, cn, _, _ = self.lstms[i](output, h[i], c[i], self.weight[i]) | |||
| if self.batch_first: | |||
| output = self.transpose2(output, (1, 0, 2)) | |||
| return output, hn, cn, _, _ | |||
| return (output, (hn, cn)) | |||
| class LSTMCell(Cell): | |||
| @@ -271,11 +278,9 @@ class LSTMCell(Cell): | |||
| >>> output, hn, cn, _, _ = net(input, h0, c0) | |||
| """ | |||
| def __init__(self, | |||
| input_size, | |||
| hidden_size, | |||
| layer_index=0, | |||
| has_bias=True, | |||
| batch_first=False, | |||
| dropout=0, | |||
| @@ -283,8 +288,6 @@ class LSTMCell(Cell): | |||
| super(LSTMCell, self).__init__() | |||
| self.input_size = input_size | |||
| self.hidden_size = hidden_size | |||
| self.num_layers = 1 | |||
| self.layer_index = layer_index | |||
| self.has_bias = has_bias | |||
| self.batch_first = validator.check_value_type("batch_first", batch_first, [bool], self.cls_name) | |||
| self.dropout = float(dropout) | |||
| @@ -295,16 +298,7 @@ class LSTMCell(Cell): | |||
| if self.batch_first: | |||
| self.transpose1 = P.Transpose() | |||
| self.transpose2 = P.Transpose() | |||
| w_np = np.ones([(self.input_size + self.hidden_size) * self.num_directions * self.hidden_size * 4, 1]).astype( | |||
| np.float32) * 0.01 | |||
| if has_bias: | |||
| b_np = np.ones([self.num_directions * self.hidden_size * 4, 1]).astype( | |||
| np.float32) * 0.01 | |||
| else: | |||
| b_np = np.zeros([self.num_directions * self.hidden_size * 4, 1]).astype( | |||
| np.float32) * 0.01 | |||
| wb_np = np.concatenate((w_np, b_np), axis=0).reshape([-1, 1, 1]) | |||
| self.w = Parameter(initializer(Tensor(wb_np), wb_np.shape), name='w' + str(self.layer_index)) | |||
| self.lstm = P.LSTM(input_size=self.input_size, | |||
| hidden_size=self.hidden_size, | |||
| num_layers=1, | |||
| @@ -312,10 +306,10 @@ class LSTMCell(Cell): | |||
| bidirectional=self.bidirectional, | |||
| dropout=self.dropout) | |||
| def construct(self, x, h, c): | |||
| def construct(self, x, h, c, w): | |||
| if self.batch_first: | |||
| x = self.transpose1(x, (1, 0, 2)) | |||
| output, hn, cn, _, _ = self.lstm(x, h, c, self.w) | |||
| output, hn, cn, _, _ = self.lstm(x, h, c, w) | |||
| if self.batch_first: | |||
| output = self.transpose2(output, (1, 0, 2)) | |||
| return output, hn, cn, _, _ | |||
| @@ -35,27 +35,22 @@ class LstmNet(nn.Cell): | |||
| if bidirectional: | |||
| num_directions = 2 | |||
| self.lstm = P.LSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) | |||
| self.lstm = nn.LSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) | |||
| input_np = np.array([[[0.6755, -1.6607, 0.1367], [0.4276, -0.7850, -0.3758]], | |||
| [[-0.6424, -0.6095, 0.6639], [0.7918, 0.4147, -0.5089]], | |||
| [[-1.5612, 0.0120, -0.7289], [-0.6656, -0.6626, -0.5883]], | |||
| [[-0.9667, -0.6296, -0.7310], [0.1026, -0.6821, -0.4387]], | |||
| [[-0.4710, 0.6558, -0.3144], [-0.8449, -0.2184, -0.1806]] | |||
| ]).astype(np.float32) | |||
| self.x = Parameter(initializer(Tensor(input_np), [seq_len, batch_size, input_size]), name='x') | |||
| self.h = Parameter(initializer( | |||
| Tensor( | |||
| np.array([0.1, 0.1, 0.1, 0.1]).reshape((num_layers * num_directions, batch_size, hidden_size)).astype( | |||
| np.float32)), | |||
| [num_layers * num_directions, batch_size, hidden_size]), name='h') | |||
| self.x = Tensor(input_np) | |||
| self.c = Parameter(initializer( | |||
| Tensor( | |||
| np.array([0.2, 0.2, 0.2, 0.2]).reshape((num_layers * num_directions, batch_size, hidden_size)).astype( | |||
| np.float32)), | |||
| [num_layers * num_directions, batch_size, hidden_size]), name='c') | |||
| self.h = Tensor(np.array([0., 0., 0., 0.]).reshape((num_directions, batch_size, hidden_size)).astype( | |||
| np.float32)) | |||
| self.c = Tensor(np.array([0., 0., 0., 0.]).reshape((num_directions, batch_size, hidden_size)).astype( | |||
| np.float32)) | |||
| self.h = tuple((self.h,)) | |||
| self.c = tuple((self.c,)) | |||
| wih = np.array([[3.4021e-01, -4.6622e-01, 4.5117e-01], | |||
| [-6.4257e-02, -2.4807e-01, 1.3550e-02], # i | |||
| [-3.2140e-01, 5.5578e-01, 6.3589e-01], | |||
| @@ -63,7 +58,7 @@ class LstmNet(nn.Cell): | |||
| [-6.9863e-01, 5.9773e-01, -3.9062e-01], | |||
| [-3.0253e-01, -1.9464e-01, 7.0591e-01], | |||
| [-4.0835e-01, 3.6751e-01, 4.7989e-01], | |||
| [-5.6894e-01, -5.0359e-01, 4.7491e-01]]).astype(np.float32) # .reshape([1,-1]) | |||
| [-5.6894e-01, -5.0359e-01, 4.7491e-01]]).astype(np.float32).reshape([1, -1]) | |||
| whh = np.array([[-0.4820, -0.2350], | |||
| [-0.1195, 0.0519], | |||
| [0.2162, -0.1178], | |||
| @@ -71,16 +66,16 @@ class LstmNet(nn.Cell): | |||
| [0.4511, -0.3961], | |||
| [-0.5962, 0.0906], | |||
| [0.1867, -0.1225], | |||
| [0.1831, 0.0850]]).astype(np.float32) # .reshape([1,-1]) | |||
| wih = wih.transpose((1, 0)) | |||
| whh = whh.transpose((1, 0)) | |||
| [0.1831, 0.0850]]).astype(np.float32).reshape([1, -1]) | |||
| bih = np.zeros((1, 8)).astype(np.float32) | |||
| w_np = np.concatenate((wih, whh, bih), axis=0).reshape([-1, 1, 1]) | |||
| w_np = np.concatenate((wih, whh, bih), axis=1).reshape([-1, 1, 1]) | |||
| self.w = Parameter(initializer(Tensor(w_np), w_np.shape), name='w') | |||
| self.lstm.weight = ParameterTuple((self.w,)) | |||
| @ms_function | |||
| def construct(self): | |||
| return self.lstm(self.x, self.h, self.c, self.w) | |||
| return self.lstm(self.x, (self.h, self.c)) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @@ -98,40 +93,41 @@ def test_lstm(): | |||
| if bidirectional: | |||
| num_directions = 2 | |||
| net = LstmNet(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) | |||
| y, h, c, _, _ = net() | |||
| y, (h, c) = net() | |||
| print(y) | |||
| print(c) | |||
| print(h) | |||
| expect_y = np.array([[[-0.16709016, 0.13125697], | |||
| [-0.08438572, -0.01969833]], | |||
| [[-0.2746155, 0.32764038], | |||
| [-0.06504016, -0.07770399]], | |||
| [[-0.00140004, 0.17706314], | |||
| [0.03244496, -0.10135599]], | |||
| [[0.08328028, 0.06437367], | |||
| [-0.04133911, -0.11072896]], | |||
| [[0.19004421, -0.02852732], | |||
| [0.09138509, -0.00344161]]] | |||
| ) | |||
| error = np.ones([num_layers, batch_size, hidden_size]) * 1.0e-4 | |||
| diff = y.asnumpy() - expect_y | |||
| assert np.all(diff < error) | |||
| assert np.all(-diff < error) | |||
| # | |||
| expect_h = np.array([[[0.19004421, -0.02852732], | |||
| [0.09138509, -0.00344161]]]) | |||
| error = np.ones((num_layers * num_directions, batch_size, hidden_size)) * 1.0e-4 | |||
| diff = h.asnumpy() - expect_h | |||
| assert np.all(diff < error) | |||
| assert np.all(-diff < error) | |||
| # | |||
| expect_c = np.array([[[0.34533143, -0.06313794], | |||
| [0.169008, -0.00555446]]]) | |||
| error = np.ones((num_layers * num_directions, batch_size, hidden_size)) * 1.0e-4 | |||
| diff = c.asnumpy() - expect_c | |||
| assert np.all(diff < error) | |||
| assert np.all(-diff < error) | |||
| expect_y = [[[-0.17992045, 0.07819052], | |||
| [-0.10745212, -0.06291768]], | |||
| [[-0.28830513, 0.30579978], | |||
| [-0.07570618, -0.08868407]], | |||
| [[-0.00814095, 0.16889746], | |||
| [0.02814853, -0.11208838]], | |||
| [[0.08157863, 0.06088024], | |||
| [-0.04227093, -0.11514835]], | |||
| [[0.18908429, -0.02963362], | |||
| [0.09106826, -0.00602506]]] | |||
| expect_h = [[[0.18908429, -0.02963362], | |||
| [0.09106826, -0.00602506]]] | |||
| expect_c = [[[0.3434288, -0.06561527], | |||
| [0.16838229, -0.00972614]]] | |||
| diff_y = y.asnumpy() - expect_y | |||
| error_y = np.ones([seq_len, batch_size, hidden_size]) * 1.0e-4 | |||
| assert np.all(diff_y < error_y) | |||
| assert np.all(-diff_y < error_y) | |||
| diff_h = h.asnumpy() - expect_h | |||
| error_h = np.ones([num_layers * num_directions, batch_size, hidden_size]) * 1.0e-4 | |||
| assert np.all(diff_h < error_h) | |||
| assert np.all(-diff_h < error_h) | |||
| diff_c = c.asnumpy() - expect_c | |||
| error_c = np.ones([num_layers * num_directions, batch_size, hidden_size]) * 1.0e-4 | |||
| assert np.all(diff_c < error_c) | |||
| assert np.all(-diff_c < error_c) | |||
| class MultiLayerBiLstmNet(nn.Cell): | |||
| @@ -161,22 +157,15 @@ class MultiLayerBiLstmNet(nn.Cell): | |||
| [1.2223, -1.3248, 0.1207, -0.8256, 0.1816, 0.7057, -0.3105, 0.5713, 0.2804, | |||
| -1.0685]]]).astype(np.float32) | |||
| self.x = Parameter(initializer(Tensor(input_np), [seq_len, batch_size, input_size]), name='x') | |||
| self.x = Tensor(input_np) | |||
| self.h0 = Parameter(initializer( | |||
| Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), | |||
| [num_directions, batch_size, hidden_size]), name='h0') | |||
| self.c0 = Parameter(initializer( | |||
| Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), | |||
| [num_directions, batch_size, hidden_size]), name='c0') | |||
| self.h1 = Parameter(initializer( | |||
| Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), | |||
| [num_directions, batch_size, hidden_size]), name='h1') | |||
| self.c1 = Parameter(initializer( | |||
| Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), | |||
| [num_directions, batch_size, hidden_size]), name='c1') | |||
| self.h = ParameterTuple((self.h0, self.h1)) | |||
| self.c = ParameterTuple((self.c0, self.c1)) | |||
| self.h0 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)) | |||
| self.c0 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)) | |||
| self.h1 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)) | |||
| self.c1 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)) | |||
| self.h = tuple((self.h0, self.h1)) | |||
| self.c = tuple((self.c0, self.c1)) | |||
| @ms_function | |||
| def construct(self): | |||
| @@ -198,7 +187,7 @@ def test_multi_layer_bilstm(): | |||
| net = MultiLayerBiLstmNet(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, | |||
| dropout) | |||
| y, h, c, _, _ = net() | |||
| y, (h, c) = net() | |||
| print(y) | |||
| print(h) | |||
| print(c) | |||
| @@ -227,66 +216,53 @@ class Net(nn.Cell): | |||
| num_directions = 1 | |||
| if bidirectional: | |||
| num_directions = 2 | |||
| input_np = np.array([[[-0.5907, 1.0557, 1.7283, 0.6706, -1.2550, -0.5298, -0.2290, -0.6735, 0.8555, 1.4836], | |||
| [-1.7070, -0.5347, -0.9105, -0.2598, 0.0588, 1.5496, 1.0757, 0.3760, -1.2020, -0.2868]], | |||
| [[0.0151, 0.2126, 0.8090, -0.5292, -2.5590, 0.4279, -0.3081, -1.4706, -0.0498, 1.2301], | |||
| [0.4165, -0.5391, -0.0996, 0.1928, -0.4909, -0.1255, 0.4444, -1.3687, 1.3096, 0.6553]], | |||
| [[-0.7802, -0.2083, -0.6388, 1.3757, 0.4293, 0.5363, 0.3202, -0.6687, -1.3864, -0.2953], | |||
| [1.0799, -0.7204, 0.1130, -0.5857, -0.4855, -1.1068, 1.0126, 0.8716, 1.5460, -0.7392]], | |||
| [[2.2645, -0.6586, -0.2227, 1.4290, -0.5006, -1.6576, -0.1793, 0.5319, 0.1360, 0.2707], | |||
| [-0.4071, 0.1575, 1.4199, -0.9156, 0.1855, 0.4947, 1.0460, -0.6365, 0.1191, -0.6374]], | |||
| [[0.2468, 1.0815, -0.4893, 0.0664, 0.6405, -2.2967, 0.7612, 0.8759, 0.5685, -1.0999], | |||
| [-0.7272, -1.7750, -0.1164, -0.7159, 0.0061, -0.7839, -1.8329, 0.3434, -0.5634, | |||
| 0.5384]]]).astype(np.float32) | |||
| input_np = np.array([[[0.6755, -1.6607, 0.1367], [0.4276, -0.7850, -0.3758]], | |||
| [[-0.6424, -0.6095, 0.6639], [0.7918, 0.4147, -0.5089]], | |||
| [[-1.5612, 0.0120, -0.7289], [-0.6656, -0.6626, -0.5883]], | |||
| [[-0.9667, -0.6296, -0.7310], [0.1026, -0.6821, -0.4387]], | |||
| [[-0.4710, 0.6558, -0.3144], [-0.8449, -0.2184, -0.1806]] | |||
| ]).astype(np.float32) | |||
| self.x = Parameter(initializer(Tensor(input_np), [seq_len, batch_size, input_size]), name='x') | |||
| self.h0 = Parameter(initializer( | |||
| Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), | |||
| [num_directions, batch_size, hidden_size]), name='h0') | |||
| self.c0 = Parameter(initializer( | |||
| Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), | |||
| [num_directions, batch_size, hidden_size]), name='c0') | |||
| wih_l0 = np.array([[0.2300, 0.6668, 0.4703, 0.0425, 0.0464, 0.6825, 0.2249, -0.4315, -0.2449, 0.2964], | |||
| [-0.2811, -0.3444, 0.2557, -0.5137, -0.5518, 0.1652, -0.6720, 0.1066, 0.3586, 0.6299], | |||
| [0.5728, -0.1784, 0.5661, 0.4012, 0.3856, -0.1899, 0.3102, 0.3717, -0.5651, 0.1952], | |||
| [0.1026, -0.0527, 0.1198, -0.3080, 0.2292, 0.5757, -0.3567, -0.2731, -0.0586, -0.2849], | |||
| [0.2194, -0.1622, 0.3219, -0.3008, -0.3713, -0.3034, -0.2385, 0.0412, -0.5205, 0.0280], | |||
| [-0.5499, -0.0733, -0.5236, -0.6753, -0.7045, -0.1839, -0.1037, -0.5026, -0.4055, -0.3416], | |||
| [0.1573, -0.1301, -0.2882, -0.3464, 0.6643, 0.1980, -0.6804, 0.5359, 0.5996, 0.0124], | |||
| [-0.6436, 0.0587, -0.6520, -0.0471, 0.1667, 0.6042, 0.5752, -0.6296, -0.2976, | |||
| -0.3757]]).astype(np.float32).reshape([1, -1]) | |||
| whh_l0 = np.array([[0.3358, 0.2790], | |||
| [-0.5355, 0.0989], | |||
| [-0.1402, 0.5120], | |||
| [0.1335, 0.1653], | |||
| [0.3533, -0.3531], | |||
| [0.4166, -0.4420], | |||
| [-0.5454, -0.1720], | |||
| [0.0041, -0.0799]]).astype(np.float32).reshape([1, -1]) | |||
| bih_l0 = np.array([0.5518, 0.1083, 0.4829, 0.0607, -0.1770, -0.6944, 0.3059, 0.5354]).astype( | |||
| np.float32).reshape([1, -1]) | |||
| bhh_l0 = np.array([0.5025, -0.1261, -0.5405, 0.3220, -0.3441, 0.6488, -0.0284, -0.2334]).astype( | |||
| np.float32).reshape([1, -1]) | |||
| w0_np = np.concatenate( | |||
| (wih_l0, whh_l0, bih_l0 + bhh_l0), | |||
| axis=1).reshape([-1, 1, 1]) | |||
| self.w0 = Parameter(initializer(Tensor(w0_np), w0_np.shape), name='w0') | |||
| self.lstm = P.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, | |||
| has_bias=has_bias, bidirectional=bidirectional, dropout=dropout) | |||
| self.hlist = [] | |||
| self.clist = [] | |||
| self.hlist.append(Parameter(initializer( | |||
| Tensor( | |||
| np.array([0.1, 0.1, 0.1, 0.1]).reshape((num_directions, batch_size, hidden_size)).astype( | |||
| np.float32)), | |||
| [num_directions, batch_size, hidden_size]), name='h')) | |||
| self.clist.append(Parameter(initializer( | |||
| Tensor( | |||
| np.array([0.2, 0.2, 0.2, 0.2]).reshape((num_directions, batch_size, hidden_size)).astype( | |||
| np.float32)), | |||
| [num_directions, batch_size, hidden_size]), name='c')) | |||
| self.h = ParameterTuple(tuple(self.hlist)) | |||
| self.c = ParameterTuple(tuple(self.clist)) | |||
| wih = np.array([[3.4021e-01, -4.6622e-01, 4.5117e-01], | |||
| [-6.4257e-02, -2.4807e-01, 1.3550e-02], # i | |||
| [-3.2140e-01, 5.5578e-01, 6.3589e-01], | |||
| [1.6547e-01, -7.9030e-02, -2.0045e-01], | |||
| [-6.9863e-01, 5.9773e-01, -3.9062e-01], | |||
| [-3.0253e-01, -1.9464e-01, 7.0591e-01], | |||
| [-4.0835e-01, 3.6751e-01, 4.7989e-01], | |||
| [-5.6894e-01, -5.0359e-01, 4.7491e-01]]).astype(np.float32).reshape([1, -1]) | |||
| whh = np.array([[-0.4820, -0.2350], | |||
| [-0.1195, 0.0519], | |||
| [0.2162, -0.1178], | |||
| [0.6237, 0.0711], | |||
| [0.4511, -0.3961], | |||
| [-0.5962, 0.0906], | |||
| [0.1867, -0.1225], | |||
| [0.1831, 0.0850]]).astype(np.float32).reshape([1, -1]) | |||
| bih = np.zeros((1, 8)).astype(np.float32) | |||
| w_np = np.concatenate((wih, whh, bih), axis=1).reshape([-1, 1, 1]) | |||
| self.w = Parameter(initializer(Tensor(w_np), w_np.shape), name='weight0') | |||
| self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, | |||
| has_bias=has_bias, bidirectional=bidirectional, dropout=dropout) | |||
| self.lstm.weight = ParameterTuple(tuple([self.w])) | |||
| @ms_function | |||
| def construct(self): | |||
| return self.lstm(self.x, self.h0, self.c0, self.w0)[0] | |||
| return self.lstm(self.x, (self.h, self.c))[0] | |||
| @pytest.mark.level0 | |||
| @@ -295,7 +271,7 @@ class Net(nn.Cell): | |||
| def test_grad(): | |||
| seq_len = 5 | |||
| batch_size = 2 | |||
| input_size = 10 | |||
| input_size = 3 | |||
| hidden_size = 2 | |||
| num_layers = 1 | |||
| has_bias = True | |||
| @@ -322,7 +298,6 @@ def test_grad(): | |||
| print(dcx) | |||
| print(dw) | |||
| # test_multi_layer_bilstm() | |||
| # test_lstm() | |||
| # tf_lstm_test() | |||
| # test_grad() | |||
| test_multi_layer_bilstm() | |||
| test_lstm() | |||
| test_grad() | |||