|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """lstm"""
- from mindspore.ops import operations as P
- from mindspore.nn.cell import Cell
- from mindspore.common.parameter import Parameter, ParameterTuple
- from mindspore.common.initializer import initializer
- from mindspore._checkparam import Validator as validator
- from mindspore import context
- import mindspore.nn as nn
- from mindspore.common.tensor import Tensor
- import numpy as np
-
- __all__ = ['LSTM', 'LSTMCell']
-
-
- class LSTM(Cell):
- r"""
- LSTM (Long Short-Term Memory) layer.
-
- Applies a LSTM to the input.
-
- There are two pipelines connecting two consecutive cells in a LSTM model; one is cell state pipeline
- and another is hidden state pipeline. Denote two consecutive time nodes as :math:`t-1` and :math:`t`.
- Given an input :math:`x_t` at time :math:`t`, an hidden state :math:`h_{t-1}` and an cell
- state :math:`c_{t-1}` of the layer at time :math:`{t-1}`, the cell state and hidden state at
- time :math:`t` is computed using an gating mechanism. Input gate :math:`i_t` is designed to protect the cell
- from perturbation by irrelevant inputs. Forget gate :math:`f_t` affords protection of the cell by forgetting
- some information in the past, which is stored in :math:`h_{t-1}`. Output gate :math:`o_t` protects other
- units from perturbation by currently irrelevant memory contents. Candidate cell state :math:`\tilde{c}_t` is
- calculated with the current input, on which the input gate will be applied. Finally, current cell state
- :math:`c_{t}` and hidden state :math:`h_{t}` are computed with the calculated gates and cell states. The complete
- formulation is as follows.
-
- .. math::
- \begin{array}{ll} \\
- i_t = \sigma(W_{ix} x_t + b_{ix} + W_{ih} h_{(t-1)} + b_{ih}) \\
- f_t = \sigma(W_{fx} x_t + b_{fx} + W_{fh} h_{(t-1)} + b_{fh}) \\
- \tilde{c}_t = \tanh(W_{cx} x_t + b_{cx} + W_{ch} h_{(t-1)} + b_{ch}) \\
- o_t = \sigma(W_{ox} x_t + b_{ox} + W_{oh} h_{(t-1)} + b_{oh}) \\
- c_t = f_t * c_{(t-1)} + i_t * \tilde{c}_t \\
- h_t = o_t * \tanh(c_t) \\
- \end{array}
-
- Here :math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product. :math:`W, b`
- are learnable weights between the output and the input in the formula. For instance,
- :math:`W_{ix}, b_{ix}` are the weight and bias used to transform from input :math:`x` to :math:`i`.
- Details can be found in paper `LONG SHORT-TERM MEMORY
- <https://www.bioinf.jku.at/publications/older/2604.pdf>`_ and
- `Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling
- <https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/43905.pdf>`_.
-
- Args:
- input_size (int): Number of features of input.
- hidden_size (int): Number of features of hidden layer.
- num_layers (int): Number of layers of stacked LSTM . Default: 1.
- has_bias (bool): Specifies whether has bias `b_ih` and `b_hh`. Default: True.
- batch_first (bool): Specifies whether the first dimension of input is batch_size. Default: False.
- dropout (float, int): If not 0, append `Dropout` layer on the outputs of each
- LSTM layer except the last layer. Default 0. The range of dropout is [0.0, 1.0].
- bidirectional (bool): Specifies whether this is a bidirectional LSTM. If set True,
- number of directions will be 2 otherwise number of directions is 1. Default: False.
-
- Inputs:
- - **input** (Tensor) - Tensor of shape (seq_len, batch_size, `input_size`).
- - **hx** (tuple) - A tuple of two Tensors (h_0, c_0) both of data type mindspore.float32 or
- mindspore.float16 and shape (num_directions * `num_layers`, batch_size, `hidden_size`).
- Data type of `hx` should be the same of `input`.
-
- Outputs:
- Tuple, a tuple constains (`output`, (`h_n`, `c_n`)).
-
- - **output** (Tensor) - Tensor of shape (seq_len, batch_size, num_directions * `hidden_size`).
- - **hx_n** (tuple) - A tuple of two Tensor (h_n, c_n) both of shape
- (num_directions * `num_layers`, batch_size, `hidden_size`).
-
- Examples:
- >>> class LstmNet(nn.Cell):
- >>> def __init__(self, input_size, hidden_size, num_layers, has_bias, batch_first, bidirectional):
- >>> super(LstmNet, self).__init__()
- >>> self.lstm = nn.LSTM(input_size=input_size,
- >>> hidden_size=hidden_size,
- >>> num_layers=num_layers,
- >>> has_bias=has_bias,
- >>> batch_first=batch_first,
- >>> bidirectional=bidirectional,
- >>> dropout=0.0)
- >>>
- >>> def construct(self, inp, h0, c0):
- >>> return self.lstm(inp, (h0, c0))
- >>>
- >>> net = LstmNet(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False)
- >>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32))
- >>> h0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
- >>> c0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
- >>> output, (hn, cn) = net(input, h0, c0)
- """
-
- def __init__(self,
- input_size,
- hidden_size,
- num_layers=1,
- has_bias=True,
- batch_first=False,
- dropout=0,
- bidirectional=False):
- super(LSTM, self).__init__()
- self.input_size = input_size
- self.hidden_size = hidden_size
- self.num_layers = num_layers
- self.has_bias = has_bias
- self.batch_first = validator.check_value_type("batch_first", batch_first, [bool], self.cls_name)
- self.dropout = float(dropout)
- self.bidirectional = bidirectional
- if self.batch_first:
- self.transpose1 = P.Transpose()
- self.transpose2 = P.Transpose()
- num_directions = 2 if self.bidirectional else 1
- self.cpu_target = False
- if context.get_context("device_target") == "CPU":
- self.cpu_target = True
- if not self.cpu_target:
- self.lstm = P.LSTM(input_size=self.input_size,
- hidden_size=self.hidden_size,
- num_layers=self.num_layers,
- has_bias=self.has_bias,
- bidirectional=self.bidirectional,
- dropout=self.dropout)
- weight_size = 0
- gate_size = 4 * self.hidden_size
- for layer in range(self.num_layers):
- input_layer_size = self.input_size if layer == 0 else self.hidden_size * num_directions
- increment_size = gate_size * input_layer_size
- increment_size += gate_size * self.hidden_size
- if self.has_bias:
- increment_size += 2 * gate_size
- weight_size += increment_size * num_directions
- self.weight = Parameter(initializer(0.0, [weight_size, 1, 1]), name='weight')
- else:
- input_size_list = []
- input_size_list.append(self.input_size)
- for i in range(self.num_layers - 1):
- input_size_list.append(self.hidden_size * num_directions)
- weights = []
- layers = []
- bias_size = 0 if not self.has_bias else num_directions * self.hidden_size * 4
- for i in range(num_layers):
- weight_size = (input_size_list[i] + self.hidden_size) * num_directions * self.hidden_size * 4
- w_np = np.ones([weight_size, 1, 1]).astype(np.float32) * 0.01
- if has_bias:
- bias_np = np.zeros([bias_size, 1, 1]).astype(np.float32)
- w_np = np.concatenate([w_np, bias_np], axis=0)
- weights.append(Parameter(initializer(Tensor(w_np), w_np.shape), name='weight' + str(i)))
-
- layers.append(nn.LSTMCell(input_size=input_size_list[i],
- hidden_size=self.hidden_size,
- has_bias=self.has_bias,
- bidirectional=self.bidirectional,
- dropout=self.dropout))
- self.lstms = layers
- self.weight = ParameterTuple(tuple(weights))
- self.fill = P.Fill()
- self.shape = P.Shape()
-
- def construct(self, x, hx):
- if self.batch_first:
- x = self.transpose1(x, (1, 0, 2))
- if not self.cpu_target:
- h, c = hx
- output, h, c, _, _ = self.lstm(x, h, c, self.weight)
- if self.batch_first:
- output = self.transpose2(output, (1, 0, 2))
- return (output, (h, c))
- h, c = hx
- output, hn, cn, _, _ = self.lstms[0](x, h[0], c[0], self.weight[0])
- for i in range(1, self.num_layers):
- output, hn, cn, _, _ = self.lstms[i](output, h[i], c[i], self.weight[i])
- if self.batch_first:
- output = self.transpose2(output, (1, 0, 2))
- return (output, (hn, cn))
-
-
- class LSTMCell(Cell):
- r"""
- LSTM (Long Short-Term Memory) layer.
-
- Applies a LSTM layer to the input.
-
- There are two pipelines connecting two consecutive cells in a LSTM model; one is cell state pipeline
- and another is hidden state pipeline. Denote two consecutive time nodes as :math:`t-1` and :math:`t`.
- Given an input :math:`x_t` at time :math:`t`, an hidden state :math:`h_{t-1}` and an cell
- state :math:`c_{t-1}` of the layer at time :math:`{t-1}`, the cell state and hidden state at
- time :math:`t` is computed using an gating mechanism. Input gate :math:`i_t` is designed to protect the cell
- from perturbation by irrelevant inputs. Forget gate :math:`f_t` affords protection of the cell by forgetting
- some information in the past, which is stored in :math:`h_{t-1}`. Output gate :math:`o_t` protects other
- units from perturbation by currently irrelevant memory contents. Candidate cell state :math:`\tilde{c}_t` is
- calculated with the current input, on which the input gate will be applied. Finally, current cell state
- :math:`c_{t}` and hidden state :math:`h_{t}` are computed with the calculated gates and cell states. The complete
- formulation is as follows.
-
- .. math::
- \begin{array}{ll} \\
- i_t = \sigma(W_{ix} x_t + b_{ix} + W_{ih} h_{(t-1)} + b_{ih}) \\
- f_t = \sigma(W_{fx} x_t + b_{fx} + W_{fh} h_{(t-1)} + b_{fh}) \\
- \tilde{c}_t = \tanh(W_{cx} x_t + b_{cx} + W_{ch} h_{(t-1)} + b_{ch}) \\
- o_t = \sigma(W_{ox} x_t + b_{ox} + W_{oh} h_{(t-1)} + b_{oh}) \\
- c_t = f_t * c_{(t-1)} + i_t * \tilde{c}_t \\
- h_t = o_t * \tanh(c_t) \\
- \end{array}
-
- Here :math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product. :math:`W, b`
- are learnable weights between the output and the input in the formula. For instance,
- :math:`W_{ix}, b_{ix}` are the weight and bias used to transform from input :math:`x` to :math:`i`.
- Details can be found in paper `LONG SHORT-TERM MEMORY
- <https://www.bioinf.jku.at/publications/older/2604.pdf>`_ and
- `Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling
- <https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/43905.pdf>`_.
-
- Args:
- input_size (int): Number of features of input.
- hidden_size (int): Number of features of hidden layer.
- layer_index (int): index of current layer of stacked LSTM . Default: 0.
- has_bias (bool): Specifies whether has bias `b_ih` and `b_hh`. Default: True.
- batch_first (bool): Specifies whether the first dimension of input is batch_size. Default: False.
- dropout (float, int): If not 0, append `Dropout` layer on the outputs of each
- LSTM layer except the last layer. Default 0. The range of dropout is [0.0, 1.0].
- bidirectional (bool): Specifies whether this is a bidirectional LSTM. If set True,
- number of directions will be 2 otherwise number of directions is 1. Default: False.
-
- Inputs:
- - **input** (Tensor) - Tensor of shape (seq_len, batch_size, `input_size`).
- - **h** - data type mindspore.float32 or
- mindspore.float16 and shape (num_directions * `num_layers`, batch_size, `hidden_size`).
- - **c** - data type mindspore.float32 or
- mindspore.float16 and shape (num_directions * `num_layers`, batch_size, `hidden_size`).
- Data type of `h' and 'c' should be the same of `input`.
-
- Outputs:
- `output`, `h_n`, `c_n`, 'reserve', 'state'.
-
- - **output** (Tensor) - Tensor of shape (seq_len, batch_size, num_directions * `hidden_size`).
- - **h** - A Tensor with shape (num_directions * `num_layers`, batch_size, `hidden_size`).
- - **c** - A Tensor with shape (num_directions * `num_layers`, batch_size, `hidden_size`).
- - **reserve** - reserved
- - **state** - reserved
-
- Examples:
- >>> class LstmNet(nn.Cell):
- >>> def __init__(self, input_size, hidden_size, layer_index, has_bias, batch_first, bidirectional):
- >>> super(LstmNet, self).__init__()
- >>> self.lstm = nn.LSTMCell(input_size=input_size,
- >>> hidden_size=hidden_size,
- >>> layer_index=layer_index,
- >>> has_bias=has_bias,
- >>> batch_first=batch_first,
- >>> bidirectional=bidirectional,
- >>> dropout=0.0)
- >>>
- >>> def construct(self, inp, h0, c0):
- >>> return self.lstm(inp, (h0, c0))
- >>>
- >>> net = LstmNet(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False)
- >>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32))
- >>> h0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
- >>> c0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
- >>> output, hn, cn, _, _ = net(input, h0, c0)
- """
-
- def __init__(self,
- input_size,
- hidden_size,
- has_bias=True,
- batch_first=False,
- dropout=0,
- bidirectional=False):
- super(LSTMCell, self).__init__()
- self.input_size = input_size
- self.hidden_size = hidden_size
- self.has_bias = has_bias
- self.batch_first = validator.check_value_type("batch_first", batch_first, [bool], self.cls_name)
- self.dropout = float(dropout)
- self.bidirectional = bidirectional
- self.num_directions = 1
- if self.bidirectional:
- self.num_directions = 2
- if self.batch_first:
- self.transpose1 = P.Transpose()
- self.transpose2 = P.Transpose()
-
- self.lstm = P.LSTM(input_size=self.input_size,
- hidden_size=self.hidden_size,
- num_layers=1,
- has_bias=self.has_bias,
- bidirectional=self.bidirectional,
- dropout=self.dropout)
-
- def construct(self, x, h, c, w):
- if self.batch_first:
- x = self.transpose1(x, (1, 0, 2))
- output, hn, cn, _, _ = self.lstm(x, h, c, w)
- if self.batch_first:
- output = self.transpose2(output, (1, 0, 2))
- return output, hn, cn, _, _
|