From: @tom__chen Reviewed-by: Signed-off-by:tags/v1.1.0
| @@ -1,28 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <cstdint> | |||
| #include "backend/kernel_compiler/gpu/arrays/repeat_elements_gpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE(RepeatElements, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| RepeatElementsGpuKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE(RepeatElements, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||
| RepeatElementsGpuKernel, int32_t) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -1,161 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GPU_KERNEL_H_ | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/repeat_elements_impl.cuh" | |||
| #include <cuda_runtime.h> | |||
| #include <algorithm> | |||
| #include <vector> | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class RepeatElementsGpuKernel : public GpuKernel { | |||
| public: | |||
| RepeatElementsGpuKernel() : rep_(1), axis_(0), input_size_(1), output_size_(0) {} | |||
| ~RepeatElementsGpuKernel() = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||
| T *input_device_address = GetDeviceAddress<T>(inputs, 0); | |||
| T *output_device_address = GetDeviceAddress<T>(outputs, 0); | |||
| switch (input_dim_) { | |||
| case 1: | |||
| CalRepeatElements1d(input_device_address, rep_, axis_, output_device_address, output_size_, | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| case 2: | |||
| CalRepeatElements2d(input_device_address, input_shape_[1], rep_, axis_, output_device_address, output_shape_[1], | |||
| output_size_, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| case 3: | |||
| CalRepeatElements3d(input_device_address, input_shape_[1], input_shape_[2], rep_, axis_, output_device_address, | |||
| output_shape_[1], output_shape_[2], output_size_, | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| case 4: | |||
| CalRepeatElements4d(input_device_address, input_shape_[1], input_shape_[2], input_shape_[3], rep_, axis_, | |||
| output_device_address, output_shape_[1], output_shape_[2], output_shape_[3], output_size_, | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| case 5: | |||
| CalRepeatElements5d(input_device_address, input_shape_[1], input_shape_[2], input_shape_[3], input_shape_[4], | |||
| rep_, axis_, output_device_address, output_shape_[1], output_shape_[2], output_shape_[3], | |||
| output_shape_[4], output_size_, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| default: | |||
| int *input_shape_device_address = GetDeviceAddress<int>(workspace, 0); | |||
| int *output_shape_device_address = GetDeviceAddress<int>(workspace, 1); | |||
| int *input_shape_cumulative_product_device_address = GetDeviceAddress<int>(workspace, 2); | |||
| CHECK_CUDA_RET_WITH_EXCEPT( | |||
| cudaMemcpyAsync(input_shape_device_address, input_shape_.data(), workspace_size_list_[0], | |||
| cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)), | |||
| "cudaMemcpyAsync input_shape failed"); | |||
| CHECK_CUDA_RET_WITH_EXCEPT( | |||
| cudaMemcpyAsync(output_shape_device_address, output_shape_.data(), workspace_size_list_[1], | |||
| cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)), | |||
| "cudaMemcpyAsync output_shape failed"); | |||
| CHECK_CUDA_RET_WITH_EXCEPT( | |||
| cudaMemcpyAsync(input_shape_cumulative_product_device_address, input_shape_cumulative_product_.data(), | |||
| workspace_size_list_[2], cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)), | |||
| "cudaMemcpyAsync input_shape_cumulative_product_device_address failed"); | |||
| CalRepeatElements(input_device_address, input_dim_, input_shape_device_address, | |||
| input_shape_cumulative_product_device_address, rep_, axis_, output_device_address, | |||
| output_shape_device_address, output_size_, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| break; | |||
| } | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| size_t input_count = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_count != 1) { | |||
| MS_LOG(EXCEPTION) << input_count << " arguments were provided, but RepeatElementsGpuKernel expects 1."; | |||
| } | |||
| std::vector<size_t> temp_input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| input_dim_ = temp_input_shape.size(); | |||
| for (size_t e : temp_input_shape) { | |||
| input_size_ *= e; | |||
| input_shape_.push_back(e); | |||
| } | |||
| int cumulative_product = 1; | |||
| for (size_t i = input_dim_ - 1; i > 0; i--) { | |||
| cumulative_product *= input_shape_[i]; | |||
| input_shape_cumulative_product_.push_back(cumulative_product); | |||
| } | |||
| std::reverse(input_shape_cumulative_product_.begin(), input_shape_cumulative_product_.end()); | |||
| axis_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "axis")); | |||
| if (axis_ < 0) { | |||
| axis_ += input_dim_; | |||
| } | |||
| rep_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "rep")); | |||
| output_size_ = input_size_ * rep_; | |||
| output_shape_ = input_shape_; | |||
| output_shape_[axis_] *= rep_; | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||
| output_size_list_.push_back(output_size_ * sizeof(T)); | |||
| // workspaces for input shape, output shape and cumulative sum | |||
| workspace_size_list_.push_back(input_dim_ * sizeof(int)); | |||
| workspace_size_list_.push_back(input_dim_ * sizeof(int)); | |||
| workspace_size_list_.push_back((input_dim_ - 1) * sizeof(int)); | |||
| } | |||
| private: | |||
| int rep_; | |||
| int axis_; | |||
| int input_dim_; | |||
| std::vector<int> input_shape_; | |||
| std::vector<int> input_shape_cumulative_product_; | |||
| std::vector<int> output_shape_; | |||
| size_t input_size_; | |||
| size_t output_size_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GPU_KERNEL_H_ | |||
| @@ -1,29 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <cstdint> | |||
| #include "backend/kernel_compiler/gpu/arrays/repeat_elements_grad_gpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE(RepeatElementsGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| RepeatElementsGradGpuKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE(RepeatElementsGrad, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||
| RepeatElementsGradGpuKernel, int32_t) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -1,119 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GRAD_GPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GRAD_GPU_KERNEL_H_ | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/repeat_elements_grad_impl.cuh" | |||
| #include <cuda_runtime.h> | |||
| #include <algorithm> | |||
| #include <vector> | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class RepeatElementsGradGpuKernel : public GpuKernel { | |||
| public: | |||
| RepeatElementsGradGpuKernel() | |||
| : rep_(1), axis_(0), input_size_(1), output_size_(0), outer_size_(1), repeat_dim_size_(1), inner_size_(1) {} | |||
| ~RepeatElementsGradGpuKernel() = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||
| T *dy = GetDeviceAddress<T>(inputs, 0); | |||
| T *dx = GetDeviceAddress<T>(outputs, 0); | |||
| CalRepeatElementsGrad(dy, rep_, dx, outer_size_, repeat_dim_size_, inner_size_, | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| size_t input_count = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_count != 1) { | |||
| MS_LOG(EXCEPTION) << input_count << " arguments were provided, but RepeatElementGradGpuKernel expects 1."; | |||
| } | |||
| std::vector<size_t> dy_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| int dy_dim = dy_shape.size(); | |||
| axis_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "axis")); | |||
| if (axis_ < 0) { | |||
| axis_ += dy_dim; | |||
| } | |||
| rep_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "rep")); | |||
| if (axis_ >= dy_dim) { | |||
| axis_ = dy_dim - 1; | |||
| rep_ = 1; | |||
| } | |||
| for (int i = 0; i < dy_dim; i++) { | |||
| auto e = dy_shape[i]; | |||
| input_size_ *= e; | |||
| input_shape_.push_back(e); | |||
| if (i < axis_) { | |||
| outer_size_ *= e; | |||
| } else if (i > axis_) { | |||
| inner_size_ *= e; | |||
| } else { | |||
| repeat_dim_size_ = e / rep_; | |||
| } | |||
| } | |||
| output_size_ = input_size_ / rep_; | |||
| output_shape_ = input_shape_; | |||
| output_shape_[axis_] /= rep_; | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||
| output_size_list_.push_back(output_size_ * sizeof(T)); | |||
| } | |||
| private: | |||
| int rep_; | |||
| int axis_; | |||
| size_t input_size_; | |||
| size_t output_size_; | |||
| int outer_size_; | |||
| int repeat_dim_size_; | |||
| int inner_size_; | |||
| std::vector<int> input_shape_; | |||
| std::vector<int> output_shape_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GRAD_GPU_KERNEL_H_ | |||
| @@ -1,48 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <cuda_runtime.h> | |||
| #include "repeat_elements_grad_impl.cuh" | |||
| #include "runtime/device/gpu/cuda_common.h" | |||
| template <typename T> | |||
| __global__ void RepeatElementsGrad(const int dx_size, const T *dy, const int rep, T *dx, const int outer_size, | |||
| const int repeat_dim_size, const int inner_size) { | |||
| for (size_t t_id = blockIdx.x * blockDim.x + threadIdx.x; t_id < dx_size; t_id += gridDim.x * blockDim.x) { | |||
| int inner_id = t_id % inner_size; | |||
| int repeat_dim_id = t_id / inner_size % repeat_dim_size; | |||
| int outer_id = t_id / inner_size / repeat_dim_size; | |||
| T dx_i = static_cast<T>(0); | |||
| for (int i = 0; i < rep; i++) { | |||
| dx_i += dy[(outer_id * rep * repeat_dim_size * inner_size) + (repeat_dim_id * rep * inner_size) + | |||
| (i * inner_size) + inner_id]; | |||
| } | |||
| dx[t_id] = dx_i; | |||
| } | |||
| } | |||
| template <typename T> | |||
| void CalRepeatElementsGrad(const T *dy, const int rep, T *dx, const int outer_size, const int repeat_dim_size, | |||
| const int inner_size, cudaStream_t cuda_stream) { | |||
| const int dx_size = outer_size * repeat_dim_size * inner_size; | |||
| RepeatElementsGrad<<<GET_BLOCKS(dx_size), GET_THREADS, 0, cuda_stream>>>(dx_size, dy, rep, dx, outer_size, | |||
| repeat_dim_size, inner_size); | |||
| } | |||
| template void CalRepeatElementsGrad<int>(const int *dy, const int rep, int *dx, const int outer_size, | |||
| const int repeat_dim_size, const int inner_size, cudaStream_t cuda_stream); | |||
| template void CalRepeatElementsGrad<half>(const half *dy, const int rep, half *dx, const int outer_size, | |||
| const int repeat_dim_size, const int inner_size, cudaStream_t cuda_stream); | |||
| @@ -1,26 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_GRAD_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_GRAD_H_ | |||
| #include <cuda_runtime.h> | |||
| template <typename T> | |||
| void CalRepeatElementsGrad(const T *dy, const int rep, T *dx, const int outer_size, const int repeat_dim_size, | |||
| const int inner_size, cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_GRAD_H_ | |||
| @@ -1,318 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <cuda_runtime.h> | |||
| #include "repeat_elements_impl.cuh" | |||
| #include "runtime/device/gpu/cuda_common.h" | |||
| template <typename T> | |||
| __global__ void RepeatElements1d(const T *input, const int rep, const int axis, T *output, | |||
| const int output_size) { | |||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||
| int copied_value_index = gt_id / rep; | |||
| output[gt_id] = input[copied_value_index]; | |||
| } | |||
| } | |||
| template <typename T> | |||
| __global__ void RepeatElements2d(const T *input, const int input_d1, const int rep, const int axis, T *output, | |||
| const int output_d1, const int output_size) { | |||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||
| int global_array_index = gt_id; | |||
| int index_d1 = global_array_index % output_d1; | |||
| global_array_index -= index_d1; | |||
| global_array_index /= output_d1; | |||
| int index_d0 = global_array_index; | |||
| switch (axis) { | |||
| case 0: | |||
| index_d0 /= rep; | |||
| break; | |||
| case 1: | |||
| index_d1 /= rep; | |||
| break; | |||
| } | |||
| const int term0 = index_d0 * input_d1; | |||
| const int copied_value_index = term0 + index_d1; | |||
| output[gt_id] = input[copied_value_index]; | |||
| } | |||
| } | |||
| template <typename T> | |||
| __global__ void RepeatElements3d(const T *input, const int input_d1, const int input_d2, const int rep, const int axis, | |||
| T *output, const int output_d1, const int output_d2, const int output_size) { | |||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||
| int global_array_index = gt_id; | |||
| int index_d2 = global_array_index % output_d2; | |||
| global_array_index -= index_d2; | |||
| global_array_index /= output_d2; | |||
| int index_d1 = global_array_index % output_d1; | |||
| global_array_index -= index_d1; | |||
| global_array_index /= output_d1; | |||
| int index_d0 = global_array_index; | |||
| switch (axis) { | |||
| case 0: | |||
| index_d0 /= rep; | |||
| break; | |||
| case 1: | |||
| index_d1 /= rep; | |||
| break; | |||
| case 2: | |||
| index_d2 /= rep; | |||
| break; | |||
| default: | |||
| asm("trap;"); | |||
| } | |||
| const int term0 = index_d0 * input_d1 * input_d2; | |||
| const int term1 = index_d1 * input_d2; | |||
| const int copied_value_index = term0 + term1 + index_d2; | |||
| output[gt_id] = input[copied_value_index]; | |||
| } | |||
| } | |||
| template <typename T> | |||
| __global__ void RepeatElements4d(const T *input, const int input_d1, const int input_d2, const int input_d3, | |||
| const int rep, const int axis, T *output, const int output_d1, const int output_d2, | |||
| const int output_d3, const int output_size) { | |||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||
| int global_array_index = gt_id; | |||
| int index_d3 = global_array_index % output_d3; | |||
| global_array_index -= index_d3; | |||
| global_array_index /= output_d3; | |||
| int index_d2 = global_array_index % output_d2; | |||
| global_array_index -= index_d2; | |||
| global_array_index /= output_d2; | |||
| int index_d1 = global_array_index % output_d1; | |||
| global_array_index -= index_d1; | |||
| global_array_index /= output_d1; | |||
| int index_d0 = global_array_index; | |||
| switch (axis) { | |||
| case 0: | |||
| index_d0 /= rep; | |||
| break; | |||
| case 1: | |||
| index_d1 /= rep; | |||
| break; | |||
| case 2: | |||
| index_d2 /= rep; | |||
| break; | |||
| case 3: | |||
| index_d3 /= rep; | |||
| break; | |||
| } | |||
| const int term0 = index_d0 * input_d1 * input_d2 * input_d3; | |||
| const int term1 = index_d1 * input_d2 * input_d3; | |||
| const int term2 = index_d2 * input_d3; | |||
| const int copied_value_index = term0 + term1 + term2 + index_d3; | |||
| output[gt_id] = input[copied_value_index]; | |||
| } | |||
| } | |||
| template <typename T> | |||
| __global__ void RepeatElements5d(const T *input, const int input_d1, const int input_d2, const int input_d3, | |||
| const int input_d4, const int rep, const int axis, T *output, const int output_d1, | |||
| const int output_d2, const int output_d3, const int output_d4, const int output_size) { | |||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||
| int global_array_index = gt_id; | |||
| int index_d4 = global_array_index % output_d4; | |||
| global_array_index -= index_d4; | |||
| global_array_index /= output_d4; | |||
| int index_d3 = global_array_index % output_d3; | |||
| global_array_index -= index_d3; | |||
| global_array_index /= output_d3; | |||
| int index_d2 = global_array_index % output_d2; | |||
| global_array_index -= index_d2; | |||
| global_array_index /= output_d2; | |||
| int index_d1 = global_array_index % output_d1; | |||
| global_array_index -= index_d1; | |||
| global_array_index /= output_d1; | |||
| int index_d0 = global_array_index; | |||
| switch (axis) { | |||
| case 0: | |||
| index_d0 /= rep; | |||
| break; | |||
| case 1: | |||
| index_d1 /= rep; | |||
| break; | |||
| case 2: | |||
| index_d2 /= rep; | |||
| break; | |||
| case 3: | |||
| index_d3 /= rep; | |||
| break; | |||
| case 4: | |||
| index_d4 /= rep; | |||
| break; | |||
| } | |||
| const int term0 = index_d0 * input_d1 * input_d2 * input_d3 * input_d4; | |||
| const int term1 = index_d1 * input_d2 * input_d3 * input_d4; | |||
| const int term2 = index_d2 * input_d3 * input_d4; | |||
| const int term3 = index_d3 * input_d4; | |||
| const int copied_value_index = term0 + term1 + term2 + term3 + index_d4; | |||
| output[gt_id] = input[copied_value_index]; | |||
| } | |||
| } | |||
| template <typename T> | |||
| __global__ void RepeatElements(const T *input, const int input_dim, const int* const input_shape, | |||
| const int* const coefficients, const int rep, const int axis, T *output, | |||
| const int* const output_shape, const int output_size) { | |||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||
| int index_tuple[REPEAT_ELEMENTS_MAX_INPUT_DIM]; | |||
| int global_array_index = gt_id; | |||
| for (size_t i = input_dim - 1; i > 0; i--) { | |||
| int coordinate = global_array_index % output_shape[i]; | |||
| index_tuple[i] = coordinate; | |||
| global_array_index -= coordinate; | |||
| global_array_index /= output_shape[i]; | |||
| } | |||
| index_tuple[0] = global_array_index; | |||
| index_tuple[axis] /= rep; | |||
| int copied_value_index = 0; | |||
| for (size_t i = 0; i < input_dim - 1; i++) { | |||
| copied_value_index += index_tuple[i] * coefficients[i]; | |||
| } | |||
| copied_value_index += index_tuple[input_dim - 1]; | |||
| output[gt_id] = input[copied_value_index]; | |||
| } | |||
| } | |||
| template <typename T> | |||
| void CalRepeatElements1d( | |||
| const T *input, const int rep, const int axis, T *output, const int output_size, cudaStream_t cuda_stream) { | |||
| RepeatElements1d<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, rep, axis, output, output_size); | |||
| } | |||
| template <typename T> | |||
| void CalRepeatElements2d(const T *input, const int input_d1, const int rep, const int axis, T *output, | |||
| const int output_d1, const int output_size, cudaStream_t cuda_stream) { | |||
| RepeatElements2d<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, input_d1, rep, axis, output, | |||
| output_d1, output_size); | |||
| } | |||
| template <typename T> | |||
| void CalRepeatElements3d(const T *input, const int input_d1, const int input_d2, const int rep, const int axis, | |||
| T *output, const int output_d1, const int output_d2, const int output_size, | |||
| cudaStream_t cuda_stream) { | |||
| RepeatElements3d<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, input_d1, input_d2, rep, axis, | |||
| output, output_d1, output_d2, output_size); | |||
| } | |||
| template <typename T> | |||
| void CalRepeatElements4d(const T *input, const int input_d1, const int input_d2, const int input_d3, const int rep, | |||
| const int axis, T *output, const int output_d1, const int output_d2, const int output_d3, | |||
| const int output_size, cudaStream_t cuda_stream) { | |||
| RepeatElements4d<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, input_d1, input_d2, input_d3, rep, | |||
| axis, output, output_d1, output_d2, | |||
| output_d3, output_size); | |||
| } | |||
| template <typename T> | |||
| void CalRepeatElements5d(const T *input, const int input_d1, const int input_d2, const int input_d3, const int input_d4, | |||
| const int rep, const int axis, T *output, const int output_d1, const int output_d2, | |||
| const int output_d3, const int output_d4, const int output_size, cudaStream_t cuda_stream) { | |||
| RepeatElements5d<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, input_d1, input_d2, input_d3, | |||
| input_d4, rep, axis, output, output_d1, | |||
| output_d2, output_d3, output_d4, | |||
| output_size); | |||
| } | |||
| template <typename T> | |||
| void CalRepeatElements(const T *input, const int input_dim, const int* const input_shape, | |||
| const int* const input_shape_cumulative_product, const int rep, const int axis, T *output, | |||
| const int* const output_shape, const int output_size, cudaStream_t cuda_stream) { | |||
| RepeatElements<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, input_dim, input_shape, | |||
| input_shape_cumulative_product, rep, axis, | |||
| output, output_shape, output_size); | |||
| } | |||
| // int32 | |||
| template void CalRepeatElements1d<int>( | |||
| const int *input, const int rep, const int axis, int *output, const int output_size, cudaStream_t cuda_stream); | |||
| template void CalRepeatElements2d<int>(const int *input, const int input_d1, const int rep, const int axis, int *output, | |||
| const int output_d1, const int output_size, cudaStream_t cuda_stream); | |||
| template void CalRepeatElements3d<int>(const int *input, const int input_d1, const int input_d2, const int rep, | |||
| const int axis, int *output, const int output_d1, const int output_d2, | |||
| const int output_size, cudaStream_t cuda_stream); | |||
| template void CalRepeatElements4d<int>(const int *input, const int input_d1, const int input_d2, const int input_d3, | |||
| const int rep, const int axis, int *output, const int output_d1, | |||
| const int output_d2, const int output_d3, const int output_size, | |||
| cudaStream_t cuda_stream); | |||
| template void CalRepeatElements5d<int>(const int *input, const int input_d1, const int input_d2, const int input_d3, | |||
| const int input_d4, const int rep, const int axis, int *output, | |||
| const int output_d1, const int output_d2, const int output_d3, | |||
| const int output_d4, const int output_size, cudaStream_t cuda_stream); | |||
| template void CalRepeatElements<int>(const int *input, const int input_dim, const int* const input_shape, | |||
| const int* const input_shape_cumulative_product, const int rep, const int axis, | |||
| int *output, const int* const output_shape, const int output_size, | |||
| cudaStream_t cuda_stream); | |||
| // float16 | |||
| template void CalRepeatElements1d<half>( | |||
| const half *input, const int rep, const int axis, half *output, const int output_size, cudaStream_t cuda_stream); | |||
| template void CalRepeatElements2d<half>(const half *input, const int input_d1, const int rep, const int axis, | |||
| half *output, const int output_d1, const int output_size, | |||
| cudaStream_t cuda_stream); | |||
| template void CalRepeatElements3d<half>(const half *input, const int input_d1, const int input_d2, const int rep, | |||
| const int axis, half *output, const int output_d1, const int output_d2, | |||
| const int output_size, cudaStream_t cuda_stream); | |||
| template void CalRepeatElements4d<half>(const half *input, const int input_d1, const int input_d2, const int input_d3, | |||
| const int rep, const int axis, half *output, const int output_d1, | |||
| const int output_d2, const int output_d3, const int output_size, | |||
| cudaStream_t cuda_stream); | |||
| template void CalRepeatElements5d<half>(const half *input, const int input_d1, const int input_d2, const int input_d3, | |||
| const int input_d4, const int rep, const int axis, half *output, | |||
| const int output_d1, const int output_d2, const int output_d3, | |||
| const int output_d4, const int output_size, cudaStream_t cuda_stream); | |||
| template void CalRepeatElements<half>(const half *input, const int input_dim, const int* const input_shape, | |||
| const int* const input_shape_cumulative_product, const int rep, const int axis, | |||
| half *output, const int* const output_shape, const int output_size, | |||
| cudaStream_t cuda_stream); | |||
| @@ -1,52 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_H_ | |||
| #include <cuda_runtime.h> | |||
| #define REPEAT_ELEMENTS_MAX_INPUT_DIM 100 | |||
| template <typename T> | |||
| void CalRepeatElements1d( | |||
| const T *input, const int rep, const int axis, T *output, const int output_size, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void CalRepeatElements2d(const T *input, const int input_d1, const int rep, const int axis, T *output, | |||
| const int output_d1, const int output_size, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void CalRepeatElements3d(const T *input, const int input_d1, const int input_d2, const int rep, const int axis, | |||
| T *output, const int output_d1, const int output_d2, const int output_size, | |||
| cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void CalRepeatElements4d(const T *input, const int input_d1, const int input_d2, const int input_d3, const int rep, | |||
| const int axis, T *output, const int output_d1, const int output_d2, const int output_d3, | |||
| const int output_size, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void CalRepeatElements5d(const T *input, const int input_d1, const int input_d2, const int input_d3, const int input_d4, | |||
| const int rep, const int axis, T *output, const int output_d1, const int output_d2, | |||
| const int output_d3, const int output_d4, const int output_size, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void CalRepeatElements(const T *input, const int input_dim, const int* const input_shape, | |||
| const int* const input_shape_cumulative_product, const int rep, const int axis, T *output, | |||
| const int* const output_shape, const int output_size, cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_H_ | |||
| @@ -897,13 +897,3 @@ def get_bprop_unique(self): | |||
| dx = op(dout, out) | |||
| return (dx,) | |||
| return bprop | |||
| @bprop_getters.register(P.RepeatElements) | |||
| def get_bprop_repeat_elements(self): | |||
| """Generate bprop for RepeatElements""" | |||
| op = G.RepeatElementsGrad(self.rep, self.axis) | |||
| def bprop(x, y, dy): | |||
| dx = op(dy) | |||
| return (dx,) | |||
| return bprop | |||
| @@ -28,6 +28,7 @@ from .multitype_ops.ones_like_impl import ones_like | |||
| from .multitype_ops.zeros_like_impl import zeros_like | |||
| from .random_ops import normal, laplace, uniform, gamma, poisson, multinomial | |||
| from .math_ops import count_nonzero, TensorDot | |||
| from .array_ops import repeat_elements | |||
| __all__ = [ | |||
| @@ -51,4 +52,5 @@ __all__ = [ | |||
| 'clip_by_value', | |||
| 'clip_by_global_norm', | |||
| 'count_nonzero', | |||
| 'TensorDot'] | |||
| 'TensorDot', | |||
| 'repeat_elements'] | |||
| @@ -0,0 +1,100 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """math Operations.""" | |||
| from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore._checkparam import Validator as validator | |||
| from mindspore._checkparam import Rel | |||
| from mindspore.ops.primitive import constexpr | |||
| from mindspore.ops import functional as F | |||
| from .. import operations as P | |||
| @constexpr | |||
| def _check_is_int(arg_value, arg_name, op_name): | |||
| arg_value = validator.check_is_int(arg_value, arg_name, op_name) | |||
| return arg_value | |||
| @constexpr | |||
| def _check_positive_int(arg_value, arg_name, op_name): | |||
| arg_value = validator.check_positive_int(arg_value, arg_name, op_name) | |||
| return arg_value | |||
| @constexpr | |||
| def _check_axis_range(arg_value, limit, arg_name, op_name): | |||
| arg_value = validator.check_int_range(arg_value, -limit, limit, Rel.INC_LEFT, arg_name, op_name) | |||
| return arg_value | |||
| @constexpr | |||
| def _cal_repeat_dims(x_rank, rep, expand_axis): | |||
| rep_dims = [1] * (x_rank + 1) | |||
| rep_dims[expand_axis] = rep | |||
| return tuple(rep_dims) | |||
| @constexpr | |||
| def _cal_reshape(x_shape, rep, axis): | |||
| x_reshape = list(x_shape) | |||
| x_reshape[axis] *= rep | |||
| return tuple(x_reshape) | |||
| def repeat_elements(x, rep, axis=0): | |||
| """ | |||
| Repeat elements of a tensor along an axis, like np.repeat. | |||
| Args: | |||
| - **x** (Tensor) - The tensor to repeat values for. | |||
| - **rep** (int) - The number of times to repeat, must be positive, required. | |||
| - **axis** (int) - The axis along which to repeat, default 0. | |||
| Outputs: | |||
| One tensor with values repeated along the specified axis. If x has shape | |||
| (s1, s2, ..., sn) and axis is i, the output will have shape (s1, s2, ..., si * rep, ..., sn) | |||
| Examples: | |||
| >>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32) | |||
| >>> output = C.RepeatElements(x, rep = 2, axis = 0) | |||
| >>> print(output) | |||
| [[0, 1, 2], | |||
| [0, 1, 2], | |||
| [3, 4, 5], | |||
| [3, 4, 5]], | |||
| """ | |||
| const_utils.check_valid_type(F.dtype(x), mstype.number_type, 'input x') | |||
| rep = _check_positive_int(rep, "rep", "repeat_elements") | |||
| axis = _check_is_int(axis, "axis", "repeat_elements") | |||
| shape_op = P.Shape() | |||
| rank_op = P.Rank() | |||
| tile_op = P.Tile() | |||
| expand_dims_op = P.ExpandDims() | |||
| reshape_op = P.Reshape() | |||
| x_rank = rank_op(x) | |||
| axis = _check_axis_range(axis, x_rank, "axis", "repeat_elements") | |||
| expand_axis = axis + 1 | |||
| x_expand = expand_dims_op(x, expand_axis) | |||
| rep_dims = _cal_repeat_dims(x_rank, rep, expand_axis) | |||
| x_expand = tile_op(x_expand, rep_dims) | |||
| x_shape = shape_op(x) | |||
| x_reshape = _cal_reshape(x_shape, rep, axis) | |||
| x_rep = reshape_op(x_expand, x_reshape) | |||
| return x_rep | |||
| @@ -33,7 +33,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack, | |||
| Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, UnsortedSegmentMax, | |||
| UnsortedSegmentProd, UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace, | |||
| SpaceToBatchND, BatchToSpaceND, BroadcastTo, InplaceUpdate, ReverseSequence, EmbeddingLookup, | |||
| Unique, GatherD, Identity, RepeatElements) | |||
| Unique, GatherD, Identity) | |||
| from .comm_ops import (AllGather, AllReduce, _AlltoAll, AllSwap, ReduceScatter, Broadcast, | |||
| _MirrorOperator, ReduceOp, _VirtualDataset, | |||
| _VirtualDiv, _GetTensorSlice, _Send, _Receive, | |||
| @@ -390,7 +390,6 @@ __all__ = [ | |||
| "Pull", | |||
| "ReLUV2", | |||
| "SparseToDense", | |||
| "RepeatElements", | |||
| ] | |||
| __all__.sort() | |||
| @@ -1912,24 +1912,3 @@ class LRNGrad(PrimitiveWithInfer): | |||
| def infer_shape(self, grads, x, y): | |||
| return x | |||
| class RepeatElementsGrad(PrimitiveWithInfer): | |||
| """Gradients of RepeatElements operation.""" | |||
| @prim_attr_register | |||
| def __init__(self, rep, axis=0): | |||
| self.init_prim_io_names(inputs=['dy'], outputs=['dx']) | |||
| validator.check_value_type("rep", rep, [int], self.name) | |||
| validator.check_value_type("axis", axis, [int], self.name) | |||
| self.rep = rep | |||
| self.axis = axis | |||
| def infer_dtype(self, dy_type): | |||
| validator.check_type_name("dy_type", dy_type, [mstype.float16, mstype.float32, mstype.int32], self.name) | |||
| return dy_type | |||
| def infer_shape(self, dy_shape): | |||
| dx_shape = dy_shape | |||
| dx_shape[self.axis] = dy_shape[self.axis] // self.rep | |||
| return dx_shape | |||
| @@ -4608,53 +4608,3 @@ class Identity(PrimitiveWithInfer): | |||
| 'dtype': x['dtype'], | |||
| 'value': None} | |||
| return out | |||
| class RepeatElements(PrimitiveWithInfer): | |||
| """ | |||
| Repeat elements of a tensor along an axis, like np.repeat. | |||
| Args: | |||
| rep (int): The number of times to repeat, must be positive, required. | |||
| axis (int): The axis along which to repeat, default 0. | |||
| Inputs: | |||
| - **x** (Tensor) - The tensor to repeat values for. Must be of type int32 or float16. | |||
| Outputs: | |||
| One tensor with values repeated along the specified axis. If x has shape | |||
| (s1, s2, ..., sn) and axis is i, the output will have shape (s1, s2, ..., si * rep, ..., sn) | |||
| Examples: | |||
| >>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32) | |||
| >>> repeat_elements = P.RepeatElements(rep = 2, axis = 0) | |||
| >>> output = repeat_elements(x) | |||
| >>> print(output) | |||
| [[0 1 2] | |||
| [0 1 2] | |||
| [3 4 5] | |||
| [3 4 5]] | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, rep, axis=0): | |||
| self.init_prim_io_names(inputs=["x"], outputs=["output"]) | |||
| validator.check_value_type("rep", rep, [int], self.name) | |||
| self.rep = rep | |||
| validator.check_value_type("axis", axis, [int], self.name) | |||
| self.axis = axis | |||
| def infer_shape(self, x_shape): | |||
| validator.check("rep", self.rep, "", 0, Rel.GT, self.name) | |||
| validator.check("axis", self.axis, "dimension of x", len(x_shape), Rel.LT, self.name) | |||
| validator.check("axis", self.axis, "negative dimension of x", -len(x_shape), Rel.GE, self.name) | |||
| x_shape[self.axis] *= self.rep | |||
| return x_shape | |||
| def infer_dtype(self, x_dtype): | |||
| validator.check_subclass("x_dtype", x_dtype, mstype.tensor, self.name) | |||
| return x_dtype | |||
| @@ -1,321 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| import mindspore.nn as nn | |||
| import mindspore.context as context | |||
| class RepeatElementsNet(nn.Cell): | |||
| def __init__(self, rep, axis): | |||
| super(RepeatElementsNet, self).__init__() | |||
| self.repeat_elements = P.RepeatElements(rep, axis) | |||
| def construct(self, x): | |||
| return self.repeat_elements(x) | |||
| class RepeatElementsGradNet(nn.Cell): | |||
| def __init__(self, rep, axis): | |||
| super(RepeatElementsGradNet, self).__init__() | |||
| self.repeat_elements_grad = G.RepeatElementsGrad(rep, axis) | |||
| def construct(self, dy): | |||
| return self.repeat_elements_grad(dy) | |||
| def repeat_elements(x, rep, axis): | |||
| repeat_elements_net = RepeatElementsNet(rep, axis) | |||
| return repeat_elements_net(Tensor(x.astype(np.int32))).asnumpy() | |||
| def repeat_elements_grad(dy, rep, axis): | |||
| repeat_elements_grad_net = RepeatElementsGradNet(rep, axis) | |||
| return repeat_elements_grad_net(Tensor(dy.astype(np.int32))).asnumpy() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_1d_one_element_rep_1(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(1) | |||
| ms_out = repeat_elements_grad(a, 1, 0) | |||
| np_out = a.repeat(1, 0) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_1d_one_element_rep_many(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(1, 2) | |||
| y = repeat_elements(a, 5, 0) | |||
| print(y) | |||
| ms_out = repeat_elements_grad(y, 5, 0) | |||
| print(ms_out) | |||
| np.testing.assert_array_equal(a*5, ms_out) | |||
| y = repeat_elements(a, 513, 0) | |||
| ms_out = repeat_elements_grad(y, 513, 0) | |||
| np.testing.assert_array_equal(a*513, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_1d_rep_1(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(24) | |||
| ms_out = repeat_elements_grad(a, 1, 0) | |||
| np_out = a.repeat(1, 0) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_1d_rep_many(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(4) | |||
| y = repeat_elements(a, 3, 0) | |||
| ms_out = repeat_elements_grad(y, 3, 0) | |||
| np.testing.assert_array_equal(a*3, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_2d_one_element_rep_1(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(1).reshape(1, 1) | |||
| ms_out = repeat_elements_grad(a, 1, 0) | |||
| np_out = a.repeat(1, 0) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| ms_out = repeat_elements_grad(a, 1, 1) | |||
| np_out = a.repeat(1, 1) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_2d_one_element_rep_many(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(1).reshape(1, 1) | |||
| y = repeat_elements(a, 13, 0) | |||
| ms_out = repeat_elements_grad(y, 13, 0) | |||
| np.testing.assert_array_equal(a*13, ms_out) | |||
| y = repeat_elements(a, 13, 1) | |||
| ms_out = repeat_elements_grad(y, 13, 1) | |||
| np.testing.assert_array_equal(a*13, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_2d_rep_1(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(24).reshape(12, 2) | |||
| ms_out = repeat_elements_grad(a, 1, 0) | |||
| np_out = a.repeat(1, 0) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| ms_out = repeat_elements_grad(a, 1, 1) | |||
| np_out = a.repeat(1, 1) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_2d_rep_many(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(24).reshape(8, 3) | |||
| y = repeat_elements(a, 23, 0) | |||
| ms_out = repeat_elements_grad(y, 23, 0) | |||
| np.testing.assert_array_equal(a*23, ms_out) | |||
| y = repeat_elements(a, 23, 1) | |||
| ms_out = repeat_elements_grad(y, 23, 1) | |||
| np.testing.assert_array_equal(a*23, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_5d_one_element_rep_1(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(1).reshape(1, 1, 1, 1, 1) | |||
| ms_out = repeat_elements_grad(a, 1, 0) | |||
| np_out = a.repeat(1, 0) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| ms_out = repeat_elements_grad(a, 1, 1) | |||
| np_out = a.repeat(1, 1) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| ms_out = repeat_elements_grad(a, 1, 2) | |||
| np_out = a.repeat(1, 2) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| ms_out = repeat_elements_grad(a, 1, 3) | |||
| np_out = a.repeat(1, 3) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| ms_out = repeat_elements_grad(a, 1, 4) | |||
| np_out = a.repeat(1, 4) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_5d_one_element_rep_many(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(1).reshape(1, 1, 1, 1, 1) | |||
| y = repeat_elements(a, 19, 0) | |||
| ms_out = repeat_elements_grad(y, 19, 0) | |||
| np.testing.assert_array_equal(a, ms_out) | |||
| y = repeat_elements(a, 19, 1) | |||
| ms_out = repeat_elements_grad(y, 19, 1) | |||
| np.testing.assert_array_equal(a, ms_out) | |||
| y = repeat_elements(a, 19, 2) | |||
| ms_out = repeat_elements_grad(y, 19, 2) | |||
| np.testing.assert_array_equal(a, ms_out) | |||
| y = repeat_elements(a, 19, 3) | |||
| ms_out = repeat_elements_grad(y, 19, 3) | |||
| np.testing.assert_array_equal(a, ms_out) | |||
| y = repeat_elements(a, 19, 4) | |||
| ms_out = repeat_elements_grad(y, 19, 4) | |||
| np.testing.assert_array_equal(a, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_5d_rep_1(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(224).reshape(8, 2, 1, 7, 2) | |||
| ms_out = repeat_elements_grad(a, 1, 0) | |||
| np_out = a.repeat(1, 0) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| ms_out = repeat_elements_grad(a, 1, 1) | |||
| np_out = a.repeat(1, 1) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| ms_out = repeat_elements_grad(a, 1, 2) | |||
| np_out = a.repeat(1, 2) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| ms_out = repeat_elements_grad(a, 1, 3) | |||
| np_out = a.repeat(1, 3) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| ms_out = repeat_elements_grad(a, 1, 4) | |||
| np_out = a.repeat(1, 4) | |||
| np.testing.assert_array_equal(np_out, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_5d_rep_many(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(224).reshape(1, 7, 4, 4, 2) | |||
| y = repeat_elements(a, 7, 0) | |||
| ms_out = repeat_elements_grad(y, 7, 0) | |||
| np.testing.assert_array_equal(a*7, ms_out) | |||
| y = repeat_elements(a, 7, 1) | |||
| ms_out = repeat_elements_grad(y, 7, 1) | |||
| np.testing.assert_array_equal(a*7, ms_out) | |||
| y = repeat_elements(a, 7, 2) | |||
| ms_out = repeat_elements_grad(y, 7, 2) | |||
| np.testing.assert_array_equal(a*7, ms_out) | |||
| y = repeat_elements(a, 7, 3) | |||
| ms_out = repeat_elements_grad(y, 7, 3) | |||
| np.testing.assert_array_equal(a*7, ms_out) | |||
| y = repeat_elements(a, 7, 4) | |||
| ms_out = repeat_elements_grad(y, 7, 4) | |||
| np.testing.assert_array_equal(a*7, ms_out) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_repeat_elements_grad_half(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| a = np.arange(1152).astype(np.float16).reshape(4, 3, 4, 2, 1, 1, 4, 3) | |||
| y = repeat_elements(a, 4, 0) | |||
| ms_out = repeat_elements_grad(y, 4, 0) | |||
| np.testing.assert_array_equal(a*4, ms_out) | |||
| y = repeat_elements(a, 4, 1) | |||
| ms_out = repeat_elements_grad(y, 4, 1) | |||
| np.testing.assert_array_equal(a*4, ms_out) | |||
| y = repeat_elements(a, 4, 2) | |||
| ms_out = repeat_elements_grad(y, 4, 2) | |||
| np.testing.assert_array_equal(a*4, ms_out) | |||
| y = repeat_elements(a, 4, 3) | |||
| ms_out = repeat_elements_grad(y, 4, 3) | |||
| np.testing.assert_array_equal(a*4, ms_out) | |||
| y = repeat_elements(a, 4, 4) | |||
| ms_out = repeat_elements_grad(y, 4, 4) | |||
| np.testing.assert_array_equal(a*4, ms_out) | |||
| y = repeat_elements(a, 4, 5) | |||
| ms_out = repeat_elements_grad(y, 4, 5) | |||
| np.testing.assert_array_equal(a*4, ms_out) | |||
| y = repeat_elements(a, 4, 6) | |||
| ms_out = repeat_elements_grad(y, 4, 6) | |||
| np.testing.assert_array_equal(a*4, ms_out) | |||
| y = repeat_elements(a, 4, 7) | |||
| ms_out = repeat_elements_grad(y, 4, 7) | |||
| np.testing.assert_array_equal(a*4, ms_out) | |||
| @@ -17,17 +17,18 @@ import numpy as np | |||
| import pytest | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import composite as C | |||
| import mindspore.nn as nn | |||
| import mindspore.context as context | |||
| class RepeatElementsNet(nn.Cell): | |||
| def __init__(self, rep, axis): | |||
| super(RepeatElementsNet, self).__init__() | |||
| self.repeat_elements = P.RepeatElements(rep, axis) | |||
| self.rep = rep | |||
| self.axis = axis | |||
| def construct(self, x): | |||
| return self.repeat_elements(x) | |||
| return C.repeat_elements(x, self.rep, self.axis) | |||
| def repeat_elements(x, rep, axis): | |||
| @@ -1,86 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| import numpy as np | |||
| import mindspore as ms | |||
| from mindspore import context, Tensor, Parameter | |||
| from mindspore.common.api import _executor | |||
| from mindspore.nn import Cell, TrainOneStepCell, Momentum | |||
| from mindspore.ops import operations as P | |||
| class Net(Cell): | |||
| def __init__(self, mul_weight, strategy1=None, strategy2=None): | |||
| super().__init__() | |||
| self.mul = P.Mul().shard(strategy1) | |||
| self.repeat = P.RepeatElements(rep=2, axis=1).shard(strategy2) | |||
| self.mul_weight = Parameter(mul_weight, "w1") | |||
| def construct(self, x, b): | |||
| out = self.mul(x, self.mul_weight) | |||
| out = self.repeat(out) | |||
| return out | |||
| _x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | |||
| _w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | |||
| _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | |||
| def compile_net(net): | |||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| train_net = TrainOneStepCell(net, optimizer) | |||
| train_net.set_auto_parallel() | |||
| train_net.set_train() | |||
| _executor.compile(train_net, _x, _b) | |||
| context.reset_auto_parallel_context() | |||
| def test_repeat_elements_data_parallel(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) | |||
| strategy1 = ((16, 1, 1), (16, 1, 1)) | |||
| strategy2 = ((16, 1, 1),) | |||
| net = Net(_w1, strategy1, strategy2) | |||
| compile_net(net) | |||
| def test_repeat_elements_model_parallel(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) | |||
| strategy1 = ((1, 1, 16), (1, 1, 16)) | |||
| strategy2 = ((1, 1, 16),) | |||
| net = Net(_w1, strategy1, strategy2) | |||
| compile_net(net) | |||
| def test_repeat_elements_hybrid_parallel(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) | |||
| strategy1 = ((2, 2, 4), (2, 2, 4)) | |||
| strategy2 = ((2, 2, 4),) | |||
| net = Net(_w1, strategy1, strategy2) | |||
| compile_net(net) | |||
| def test_repeat_elements_auto_parallel(): | |||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) | |||
| net = Net(_w1) | |||
| compile_net(net) | |||
| def test_repeat_elements_repeat_calc(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) | |||
| strategy1 = ((2, 2, 4), (2, 2, 4)) | |||
| strategy2 = ((1, 2, 2),) | |||
| net = Net(_w1, strategy1, strategy2) | |||
| compile_net(net) | |||