From: @tom__chen Reviewed-by: Signed-off-by:tags/v1.1.0
| @@ -1,28 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <cstdint> | |||||
| #include "backend/kernel_compiler/gpu/arrays/repeat_elements_gpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE(RepeatElements, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||||
| RepeatElementsGpuKernel, half) | |||||
| MS_REG_GPU_KERNEL_ONE(RepeatElements, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||||
| RepeatElementsGpuKernel, int32_t) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -1,161 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GPU_KERNEL_H_ | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/repeat_elements_impl.cuh" | |||||
| #include <cuda_runtime.h> | |||||
| #include <algorithm> | |||||
| #include <vector> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class RepeatElementsGpuKernel : public GpuKernel { | |||||
| public: | |||||
| RepeatElementsGpuKernel() : rep_(1), axis_(0), input_size_(1), output_size_(0) {} | |||||
| ~RepeatElementsGpuKernel() = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| T *input_device_address = GetDeviceAddress<T>(inputs, 0); | |||||
| T *output_device_address = GetDeviceAddress<T>(outputs, 0); | |||||
| switch (input_dim_) { | |||||
| case 1: | |||||
| CalRepeatElements1d(input_device_address, rep_, axis_, output_device_address, output_size_, | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| break; | |||||
| case 2: | |||||
| CalRepeatElements2d(input_device_address, input_shape_[1], rep_, axis_, output_device_address, output_shape_[1], | |||||
| output_size_, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| break; | |||||
| case 3: | |||||
| CalRepeatElements3d(input_device_address, input_shape_[1], input_shape_[2], rep_, axis_, output_device_address, | |||||
| output_shape_[1], output_shape_[2], output_size_, | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| break; | |||||
| case 4: | |||||
| CalRepeatElements4d(input_device_address, input_shape_[1], input_shape_[2], input_shape_[3], rep_, axis_, | |||||
| output_device_address, output_shape_[1], output_shape_[2], output_shape_[3], output_size_, | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| break; | |||||
| case 5: | |||||
| CalRepeatElements5d(input_device_address, input_shape_[1], input_shape_[2], input_shape_[3], input_shape_[4], | |||||
| rep_, axis_, output_device_address, output_shape_[1], output_shape_[2], output_shape_[3], | |||||
| output_shape_[4], output_size_, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| break; | |||||
| default: | |||||
| int *input_shape_device_address = GetDeviceAddress<int>(workspace, 0); | |||||
| int *output_shape_device_address = GetDeviceAddress<int>(workspace, 1); | |||||
| int *input_shape_cumulative_product_device_address = GetDeviceAddress<int>(workspace, 2); | |||||
| CHECK_CUDA_RET_WITH_EXCEPT( | |||||
| cudaMemcpyAsync(input_shape_device_address, input_shape_.data(), workspace_size_list_[0], | |||||
| cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)), | |||||
| "cudaMemcpyAsync input_shape failed"); | |||||
| CHECK_CUDA_RET_WITH_EXCEPT( | |||||
| cudaMemcpyAsync(output_shape_device_address, output_shape_.data(), workspace_size_list_[1], | |||||
| cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)), | |||||
| "cudaMemcpyAsync output_shape failed"); | |||||
| CHECK_CUDA_RET_WITH_EXCEPT( | |||||
| cudaMemcpyAsync(input_shape_cumulative_product_device_address, input_shape_cumulative_product_.data(), | |||||
| workspace_size_list_[2], cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)), | |||||
| "cudaMemcpyAsync input_shape_cumulative_product_device_address failed"); | |||||
| CalRepeatElements(input_device_address, input_dim_, input_shape_device_address, | |||||
| input_shape_cumulative_product_device_address, rep_, axis_, output_device_address, | |||||
| output_shape_device_address, output_size_, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| break; | |||||
| } | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| size_t input_count = AnfAlgo::GetInputTensorNum(kernel_node); | |||||
| if (input_count != 1) { | |||||
| MS_LOG(EXCEPTION) << input_count << " arguments were provided, but RepeatElementsGpuKernel expects 1."; | |||||
| } | |||||
| std::vector<size_t> temp_input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| input_dim_ = temp_input_shape.size(); | |||||
| for (size_t e : temp_input_shape) { | |||||
| input_size_ *= e; | |||||
| input_shape_.push_back(e); | |||||
| } | |||||
| int cumulative_product = 1; | |||||
| for (size_t i = input_dim_ - 1; i > 0; i--) { | |||||
| cumulative_product *= input_shape_[i]; | |||||
| input_shape_cumulative_product_.push_back(cumulative_product); | |||||
| } | |||||
| std::reverse(input_shape_cumulative_product_.begin(), input_shape_cumulative_product_.end()); | |||||
| axis_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "axis")); | |||||
| if (axis_ < 0) { | |||||
| axis_ += input_dim_; | |||||
| } | |||||
| rep_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "rep")); | |||||
| output_size_ = input_size_ * rep_; | |||||
| output_shape_ = input_shape_; | |||||
| output_shape_[axis_] *= rep_; | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| output_size_list_.push_back(output_size_ * sizeof(T)); | |||||
| // workspaces for input shape, output shape and cumulative sum | |||||
| workspace_size_list_.push_back(input_dim_ * sizeof(int)); | |||||
| workspace_size_list_.push_back(input_dim_ * sizeof(int)); | |||||
| workspace_size_list_.push_back((input_dim_ - 1) * sizeof(int)); | |||||
| } | |||||
| private: | |||||
| int rep_; | |||||
| int axis_; | |||||
| int input_dim_; | |||||
| std::vector<int> input_shape_; | |||||
| std::vector<int> input_shape_cumulative_product_; | |||||
| std::vector<int> output_shape_; | |||||
| size_t input_size_; | |||||
| size_t output_size_; | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GPU_KERNEL_H_ | |||||
| @@ -1,29 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <cstdint> | |||||
| #include "backend/kernel_compiler/gpu/arrays/repeat_elements_grad_gpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE(RepeatElementsGrad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||||
| RepeatElementsGradGpuKernel, half) | |||||
| MS_REG_GPU_KERNEL_ONE(RepeatElementsGrad, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||||
| RepeatElementsGradGpuKernel, int32_t) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -1,119 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GRAD_GPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GRAD_GPU_KERNEL_H_ | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/repeat_elements_grad_impl.cuh" | |||||
| #include <cuda_runtime.h> | |||||
| #include <algorithm> | |||||
| #include <vector> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class RepeatElementsGradGpuKernel : public GpuKernel { | |||||
| public: | |||||
| RepeatElementsGradGpuKernel() | |||||
| : rep_(1), axis_(0), input_size_(1), output_size_(0), outer_size_(1), repeat_dim_size_(1), inner_size_(1) {} | |||||
| ~RepeatElementsGradGpuKernel() = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| T *dy = GetDeviceAddress<T>(inputs, 0); | |||||
| T *dx = GetDeviceAddress<T>(outputs, 0); | |||||
| CalRepeatElementsGrad(dy, rep_, dx, outer_size_, repeat_dim_size_, inner_size_, | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| size_t input_count = AnfAlgo::GetInputTensorNum(kernel_node); | |||||
| if (input_count != 1) { | |||||
| MS_LOG(EXCEPTION) << input_count << " arguments were provided, but RepeatElementGradGpuKernel expects 1."; | |||||
| } | |||||
| std::vector<size_t> dy_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| int dy_dim = dy_shape.size(); | |||||
| axis_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "axis")); | |||||
| if (axis_ < 0) { | |||||
| axis_ += dy_dim; | |||||
| } | |||||
| rep_ = static_cast<int>(GetAttr<int64_t>(kernel_node, "rep")); | |||||
| if (axis_ >= dy_dim) { | |||||
| axis_ = dy_dim - 1; | |||||
| rep_ = 1; | |||||
| } | |||||
| for (int i = 0; i < dy_dim; i++) { | |||||
| auto e = dy_shape[i]; | |||||
| input_size_ *= e; | |||||
| input_shape_.push_back(e); | |||||
| if (i < axis_) { | |||||
| outer_size_ *= e; | |||||
| } else if (i > axis_) { | |||||
| inner_size_ *= e; | |||||
| } else { | |||||
| repeat_dim_size_ = e / rep_; | |||||
| } | |||||
| } | |||||
| output_size_ = input_size_ / rep_; | |||||
| output_shape_ = input_shape_; | |||||
| output_shape_[axis_] /= rep_; | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| output_size_list_.push_back(output_size_ * sizeof(T)); | |||||
| } | |||||
| private: | |||||
| int rep_; | |||||
| int axis_; | |||||
| size_t input_size_; | |||||
| size_t output_size_; | |||||
| int outer_size_; | |||||
| int repeat_dim_size_; | |||||
| int inner_size_; | |||||
| std::vector<int> input_shape_; | |||||
| std::vector<int> output_shape_; | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GRAD_GPU_KERNEL_H_ | |||||
| @@ -1,48 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <cuda_runtime.h> | |||||
| #include "repeat_elements_grad_impl.cuh" | |||||
| #include "runtime/device/gpu/cuda_common.h" | |||||
| template <typename T> | |||||
| __global__ void RepeatElementsGrad(const int dx_size, const T *dy, const int rep, T *dx, const int outer_size, | |||||
| const int repeat_dim_size, const int inner_size) { | |||||
| for (size_t t_id = blockIdx.x * blockDim.x + threadIdx.x; t_id < dx_size; t_id += gridDim.x * blockDim.x) { | |||||
| int inner_id = t_id % inner_size; | |||||
| int repeat_dim_id = t_id / inner_size % repeat_dim_size; | |||||
| int outer_id = t_id / inner_size / repeat_dim_size; | |||||
| T dx_i = static_cast<T>(0); | |||||
| for (int i = 0; i < rep; i++) { | |||||
| dx_i += dy[(outer_id * rep * repeat_dim_size * inner_size) + (repeat_dim_id * rep * inner_size) + | |||||
| (i * inner_size) + inner_id]; | |||||
| } | |||||
| dx[t_id] = dx_i; | |||||
| } | |||||
| } | |||||
| template <typename T> | |||||
| void CalRepeatElementsGrad(const T *dy, const int rep, T *dx, const int outer_size, const int repeat_dim_size, | |||||
| const int inner_size, cudaStream_t cuda_stream) { | |||||
| const int dx_size = outer_size * repeat_dim_size * inner_size; | |||||
| RepeatElementsGrad<<<GET_BLOCKS(dx_size), GET_THREADS, 0, cuda_stream>>>(dx_size, dy, rep, dx, outer_size, | |||||
| repeat_dim_size, inner_size); | |||||
| } | |||||
| template void CalRepeatElementsGrad<int>(const int *dy, const int rep, int *dx, const int outer_size, | |||||
| const int repeat_dim_size, const int inner_size, cudaStream_t cuda_stream); | |||||
| template void CalRepeatElementsGrad<half>(const half *dy, const int rep, half *dx, const int outer_size, | |||||
| const int repeat_dim_size, const int inner_size, cudaStream_t cuda_stream); | |||||
| @@ -1,26 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_GRAD_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_GRAD_H_ | |||||
| #include <cuda_runtime.h> | |||||
| template <typename T> | |||||
| void CalRepeatElementsGrad(const T *dy, const int rep, T *dx, const int outer_size, const int repeat_dim_size, | |||||
| const int inner_size, cudaStream_t cuda_stream); | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_GRAD_H_ | |||||
| @@ -1,318 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <cuda_runtime.h> | |||||
| #include "repeat_elements_impl.cuh" | |||||
| #include "runtime/device/gpu/cuda_common.h" | |||||
| template <typename T> | |||||
| __global__ void RepeatElements1d(const T *input, const int rep, const int axis, T *output, | |||||
| const int output_size) { | |||||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||||
| int copied_value_index = gt_id / rep; | |||||
| output[gt_id] = input[copied_value_index]; | |||||
| } | |||||
| } | |||||
| template <typename T> | |||||
| __global__ void RepeatElements2d(const T *input, const int input_d1, const int rep, const int axis, T *output, | |||||
| const int output_d1, const int output_size) { | |||||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||||
| int global_array_index = gt_id; | |||||
| int index_d1 = global_array_index % output_d1; | |||||
| global_array_index -= index_d1; | |||||
| global_array_index /= output_d1; | |||||
| int index_d0 = global_array_index; | |||||
| switch (axis) { | |||||
| case 0: | |||||
| index_d0 /= rep; | |||||
| break; | |||||
| case 1: | |||||
| index_d1 /= rep; | |||||
| break; | |||||
| } | |||||
| const int term0 = index_d0 * input_d1; | |||||
| const int copied_value_index = term0 + index_d1; | |||||
| output[gt_id] = input[copied_value_index]; | |||||
| } | |||||
| } | |||||
| template <typename T> | |||||
| __global__ void RepeatElements3d(const T *input, const int input_d1, const int input_d2, const int rep, const int axis, | |||||
| T *output, const int output_d1, const int output_d2, const int output_size) { | |||||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||||
| int global_array_index = gt_id; | |||||
| int index_d2 = global_array_index % output_d2; | |||||
| global_array_index -= index_d2; | |||||
| global_array_index /= output_d2; | |||||
| int index_d1 = global_array_index % output_d1; | |||||
| global_array_index -= index_d1; | |||||
| global_array_index /= output_d1; | |||||
| int index_d0 = global_array_index; | |||||
| switch (axis) { | |||||
| case 0: | |||||
| index_d0 /= rep; | |||||
| break; | |||||
| case 1: | |||||
| index_d1 /= rep; | |||||
| break; | |||||
| case 2: | |||||
| index_d2 /= rep; | |||||
| break; | |||||
| default: | |||||
| asm("trap;"); | |||||
| } | |||||
| const int term0 = index_d0 * input_d1 * input_d2; | |||||
| const int term1 = index_d1 * input_d2; | |||||
| const int copied_value_index = term0 + term1 + index_d2; | |||||
| output[gt_id] = input[copied_value_index]; | |||||
| } | |||||
| } | |||||
| template <typename T> | |||||
| __global__ void RepeatElements4d(const T *input, const int input_d1, const int input_d2, const int input_d3, | |||||
| const int rep, const int axis, T *output, const int output_d1, const int output_d2, | |||||
| const int output_d3, const int output_size) { | |||||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||||
| int global_array_index = gt_id; | |||||
| int index_d3 = global_array_index % output_d3; | |||||
| global_array_index -= index_d3; | |||||
| global_array_index /= output_d3; | |||||
| int index_d2 = global_array_index % output_d2; | |||||
| global_array_index -= index_d2; | |||||
| global_array_index /= output_d2; | |||||
| int index_d1 = global_array_index % output_d1; | |||||
| global_array_index -= index_d1; | |||||
| global_array_index /= output_d1; | |||||
| int index_d0 = global_array_index; | |||||
| switch (axis) { | |||||
| case 0: | |||||
| index_d0 /= rep; | |||||
| break; | |||||
| case 1: | |||||
| index_d1 /= rep; | |||||
| break; | |||||
| case 2: | |||||
| index_d2 /= rep; | |||||
| break; | |||||
| case 3: | |||||
| index_d3 /= rep; | |||||
| break; | |||||
| } | |||||
| const int term0 = index_d0 * input_d1 * input_d2 * input_d3; | |||||
| const int term1 = index_d1 * input_d2 * input_d3; | |||||
| const int term2 = index_d2 * input_d3; | |||||
| const int copied_value_index = term0 + term1 + term2 + index_d3; | |||||
| output[gt_id] = input[copied_value_index]; | |||||
| } | |||||
| } | |||||
| template <typename T> | |||||
| __global__ void RepeatElements5d(const T *input, const int input_d1, const int input_d2, const int input_d3, | |||||
| const int input_d4, const int rep, const int axis, T *output, const int output_d1, | |||||
| const int output_d2, const int output_d3, const int output_d4, const int output_size) { | |||||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||||
| int global_array_index = gt_id; | |||||
| int index_d4 = global_array_index % output_d4; | |||||
| global_array_index -= index_d4; | |||||
| global_array_index /= output_d4; | |||||
| int index_d3 = global_array_index % output_d3; | |||||
| global_array_index -= index_d3; | |||||
| global_array_index /= output_d3; | |||||
| int index_d2 = global_array_index % output_d2; | |||||
| global_array_index -= index_d2; | |||||
| global_array_index /= output_d2; | |||||
| int index_d1 = global_array_index % output_d1; | |||||
| global_array_index -= index_d1; | |||||
| global_array_index /= output_d1; | |||||
| int index_d0 = global_array_index; | |||||
| switch (axis) { | |||||
| case 0: | |||||
| index_d0 /= rep; | |||||
| break; | |||||
| case 1: | |||||
| index_d1 /= rep; | |||||
| break; | |||||
| case 2: | |||||
| index_d2 /= rep; | |||||
| break; | |||||
| case 3: | |||||
| index_d3 /= rep; | |||||
| break; | |||||
| case 4: | |||||
| index_d4 /= rep; | |||||
| break; | |||||
| } | |||||
| const int term0 = index_d0 * input_d1 * input_d2 * input_d3 * input_d4; | |||||
| const int term1 = index_d1 * input_d2 * input_d3 * input_d4; | |||||
| const int term2 = index_d2 * input_d3 * input_d4; | |||||
| const int term3 = index_d3 * input_d4; | |||||
| const int copied_value_index = term0 + term1 + term2 + term3 + index_d4; | |||||
| output[gt_id] = input[copied_value_index]; | |||||
| } | |||||
| } | |||||
| template <typename T> | |||||
| __global__ void RepeatElements(const T *input, const int input_dim, const int* const input_shape, | |||||
| const int* const coefficients, const int rep, const int axis, T *output, | |||||
| const int* const output_shape, const int output_size) { | |||||
| for (size_t gt_id = blockIdx.x * blockDim.x + threadIdx.x; gt_id < output_size; gt_id += gridDim.x * blockDim.x) { | |||||
| int index_tuple[REPEAT_ELEMENTS_MAX_INPUT_DIM]; | |||||
| int global_array_index = gt_id; | |||||
| for (size_t i = input_dim - 1; i > 0; i--) { | |||||
| int coordinate = global_array_index % output_shape[i]; | |||||
| index_tuple[i] = coordinate; | |||||
| global_array_index -= coordinate; | |||||
| global_array_index /= output_shape[i]; | |||||
| } | |||||
| index_tuple[0] = global_array_index; | |||||
| index_tuple[axis] /= rep; | |||||
| int copied_value_index = 0; | |||||
| for (size_t i = 0; i < input_dim - 1; i++) { | |||||
| copied_value_index += index_tuple[i] * coefficients[i]; | |||||
| } | |||||
| copied_value_index += index_tuple[input_dim - 1]; | |||||
| output[gt_id] = input[copied_value_index]; | |||||
| } | |||||
| } | |||||
| template <typename T> | |||||
| void CalRepeatElements1d( | |||||
| const T *input, const int rep, const int axis, T *output, const int output_size, cudaStream_t cuda_stream) { | |||||
| RepeatElements1d<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, rep, axis, output, output_size); | |||||
| } | |||||
| template <typename T> | |||||
| void CalRepeatElements2d(const T *input, const int input_d1, const int rep, const int axis, T *output, | |||||
| const int output_d1, const int output_size, cudaStream_t cuda_stream) { | |||||
| RepeatElements2d<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, input_d1, rep, axis, output, | |||||
| output_d1, output_size); | |||||
| } | |||||
| template <typename T> | |||||
| void CalRepeatElements3d(const T *input, const int input_d1, const int input_d2, const int rep, const int axis, | |||||
| T *output, const int output_d1, const int output_d2, const int output_size, | |||||
| cudaStream_t cuda_stream) { | |||||
| RepeatElements3d<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, input_d1, input_d2, rep, axis, | |||||
| output, output_d1, output_d2, output_size); | |||||
| } | |||||
| template <typename T> | |||||
| void CalRepeatElements4d(const T *input, const int input_d1, const int input_d2, const int input_d3, const int rep, | |||||
| const int axis, T *output, const int output_d1, const int output_d2, const int output_d3, | |||||
| const int output_size, cudaStream_t cuda_stream) { | |||||
| RepeatElements4d<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, input_d1, input_d2, input_d3, rep, | |||||
| axis, output, output_d1, output_d2, | |||||
| output_d3, output_size); | |||||
| } | |||||
| template <typename T> | |||||
| void CalRepeatElements5d(const T *input, const int input_d1, const int input_d2, const int input_d3, const int input_d4, | |||||
| const int rep, const int axis, T *output, const int output_d1, const int output_d2, | |||||
| const int output_d3, const int output_d4, const int output_size, cudaStream_t cuda_stream) { | |||||
| RepeatElements5d<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, input_d1, input_d2, input_d3, | |||||
| input_d4, rep, axis, output, output_d1, | |||||
| output_d2, output_d3, output_d4, | |||||
| output_size); | |||||
| } | |||||
| template <typename T> | |||||
| void CalRepeatElements(const T *input, const int input_dim, const int* const input_shape, | |||||
| const int* const input_shape_cumulative_product, const int rep, const int axis, T *output, | |||||
| const int* const output_shape, const int output_size, cudaStream_t cuda_stream) { | |||||
| RepeatElements<<<GET_BLOCKS(output_size), GET_THREADS, 0, cuda_stream>>>(input, input_dim, input_shape, | |||||
| input_shape_cumulative_product, rep, axis, | |||||
| output, output_shape, output_size); | |||||
| } | |||||
| // int32 | |||||
| template void CalRepeatElements1d<int>( | |||||
| const int *input, const int rep, const int axis, int *output, const int output_size, cudaStream_t cuda_stream); | |||||
| template void CalRepeatElements2d<int>(const int *input, const int input_d1, const int rep, const int axis, int *output, | |||||
| const int output_d1, const int output_size, cudaStream_t cuda_stream); | |||||
| template void CalRepeatElements3d<int>(const int *input, const int input_d1, const int input_d2, const int rep, | |||||
| const int axis, int *output, const int output_d1, const int output_d2, | |||||
| const int output_size, cudaStream_t cuda_stream); | |||||
| template void CalRepeatElements4d<int>(const int *input, const int input_d1, const int input_d2, const int input_d3, | |||||
| const int rep, const int axis, int *output, const int output_d1, | |||||
| const int output_d2, const int output_d3, const int output_size, | |||||
| cudaStream_t cuda_stream); | |||||
| template void CalRepeatElements5d<int>(const int *input, const int input_d1, const int input_d2, const int input_d3, | |||||
| const int input_d4, const int rep, const int axis, int *output, | |||||
| const int output_d1, const int output_d2, const int output_d3, | |||||
| const int output_d4, const int output_size, cudaStream_t cuda_stream); | |||||
| template void CalRepeatElements<int>(const int *input, const int input_dim, const int* const input_shape, | |||||
| const int* const input_shape_cumulative_product, const int rep, const int axis, | |||||
| int *output, const int* const output_shape, const int output_size, | |||||
| cudaStream_t cuda_stream); | |||||
| // float16 | |||||
| template void CalRepeatElements1d<half>( | |||||
| const half *input, const int rep, const int axis, half *output, const int output_size, cudaStream_t cuda_stream); | |||||
| template void CalRepeatElements2d<half>(const half *input, const int input_d1, const int rep, const int axis, | |||||
| half *output, const int output_d1, const int output_size, | |||||
| cudaStream_t cuda_stream); | |||||
| template void CalRepeatElements3d<half>(const half *input, const int input_d1, const int input_d2, const int rep, | |||||
| const int axis, half *output, const int output_d1, const int output_d2, | |||||
| const int output_size, cudaStream_t cuda_stream); | |||||
| template void CalRepeatElements4d<half>(const half *input, const int input_d1, const int input_d2, const int input_d3, | |||||
| const int rep, const int axis, half *output, const int output_d1, | |||||
| const int output_d2, const int output_d3, const int output_size, | |||||
| cudaStream_t cuda_stream); | |||||
| template void CalRepeatElements5d<half>(const half *input, const int input_d1, const int input_d2, const int input_d3, | |||||
| const int input_d4, const int rep, const int axis, half *output, | |||||
| const int output_d1, const int output_d2, const int output_d3, | |||||
| const int output_d4, const int output_size, cudaStream_t cuda_stream); | |||||
| template void CalRepeatElements<half>(const half *input, const int input_dim, const int* const input_shape, | |||||
| const int* const input_shape_cumulative_product, const int rep, const int axis, | |||||
| half *output, const int* const output_shape, const int output_size, | |||||
| cudaStream_t cuda_stream); | |||||
| @@ -1,52 +0,0 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_H_ | |||||
| #include <cuda_runtime.h> | |||||
| #define REPEAT_ELEMENTS_MAX_INPUT_DIM 100 | |||||
| template <typename T> | |||||
| void CalRepeatElements1d( | |||||
| const T *input, const int rep, const int axis, T *output, const int output_size, cudaStream_t cuda_stream); | |||||
| template <typename T> | |||||
| void CalRepeatElements2d(const T *input, const int input_d1, const int rep, const int axis, T *output, | |||||
| const int output_d1, const int output_size, cudaStream_t cuda_stream); | |||||
| template <typename T> | |||||
| void CalRepeatElements3d(const T *input, const int input_d1, const int input_d2, const int rep, const int axis, | |||||
| T *output, const int output_d1, const int output_d2, const int output_size, | |||||
| cudaStream_t cuda_stream); | |||||
| template <typename T> | |||||
| void CalRepeatElements4d(const T *input, const int input_d1, const int input_d2, const int input_d3, const int rep, | |||||
| const int axis, T *output, const int output_d1, const int output_d2, const int output_d3, | |||||
| const int output_size, cudaStream_t cuda_stream); | |||||
| template <typename T> | |||||
| void CalRepeatElements5d(const T *input, const int input_d1, const int input_d2, const int input_d3, const int input_d4, | |||||
| const int rep, const int axis, T *output, const int output_d1, const int output_d2, | |||||
| const int output_d3, const int output_d4, const int output_size, cudaStream_t cuda_stream); | |||||
| template <typename T> | |||||
| void CalRepeatElements(const T *input, const int input_dim, const int* const input_shape, | |||||
| const int* const input_shape_cumulative_product, const int rep, const int axis, T *output, | |||||
| const int* const output_shape, const int output_size, cudaStream_t cuda_stream); | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_H_ | |||||
| @@ -897,13 +897,3 @@ def get_bprop_unique(self): | |||||
| dx = op(dout, out) | dx = op(dout, out) | ||||
| return (dx,) | return (dx,) | ||||
| return bprop | return bprop | ||||
| @bprop_getters.register(P.RepeatElements) | |||||
| def get_bprop_repeat_elements(self): | |||||
| """Generate bprop for RepeatElements""" | |||||
| op = G.RepeatElementsGrad(self.rep, self.axis) | |||||
| def bprop(x, y, dy): | |||||
| dx = op(dy) | |||||
| return (dx,) | |||||
| return bprop | |||||
| @@ -28,6 +28,7 @@ from .multitype_ops.ones_like_impl import ones_like | |||||
| from .multitype_ops.zeros_like_impl import zeros_like | from .multitype_ops.zeros_like_impl import zeros_like | ||||
| from .random_ops import normal, laplace, uniform, gamma, poisson, multinomial | from .random_ops import normal, laplace, uniform, gamma, poisson, multinomial | ||||
| from .math_ops import count_nonzero, TensorDot | from .math_ops import count_nonzero, TensorDot | ||||
| from .array_ops import repeat_elements | |||||
| __all__ = [ | __all__ = [ | ||||
| @@ -51,4 +52,5 @@ __all__ = [ | |||||
| 'clip_by_value', | 'clip_by_value', | ||||
| 'clip_by_global_norm', | 'clip_by_global_norm', | ||||
| 'count_nonzero', | 'count_nonzero', | ||||
| 'TensorDot'] | |||||
| 'TensorDot', | |||||
| 'repeat_elements'] | |||||
| @@ -0,0 +1,100 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """math Operations.""" | |||||
| from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils | |||||
| from mindspore.common import dtype as mstype | |||||
| from mindspore._checkparam import Validator as validator | |||||
| from mindspore._checkparam import Rel | |||||
| from mindspore.ops.primitive import constexpr | |||||
| from mindspore.ops import functional as F | |||||
| from .. import operations as P | |||||
| @constexpr | |||||
| def _check_is_int(arg_value, arg_name, op_name): | |||||
| arg_value = validator.check_is_int(arg_value, arg_name, op_name) | |||||
| return arg_value | |||||
| @constexpr | |||||
| def _check_positive_int(arg_value, arg_name, op_name): | |||||
| arg_value = validator.check_positive_int(arg_value, arg_name, op_name) | |||||
| return arg_value | |||||
| @constexpr | |||||
| def _check_axis_range(arg_value, limit, arg_name, op_name): | |||||
| arg_value = validator.check_int_range(arg_value, -limit, limit, Rel.INC_LEFT, arg_name, op_name) | |||||
| return arg_value | |||||
| @constexpr | |||||
| def _cal_repeat_dims(x_rank, rep, expand_axis): | |||||
| rep_dims = [1] * (x_rank + 1) | |||||
| rep_dims[expand_axis] = rep | |||||
| return tuple(rep_dims) | |||||
| @constexpr | |||||
| def _cal_reshape(x_shape, rep, axis): | |||||
| x_reshape = list(x_shape) | |||||
| x_reshape[axis] *= rep | |||||
| return tuple(x_reshape) | |||||
| def repeat_elements(x, rep, axis=0): | |||||
| """ | |||||
| Repeat elements of a tensor along an axis, like np.repeat. | |||||
| Args: | |||||
| - **x** (Tensor) - The tensor to repeat values for. | |||||
| - **rep** (int) - The number of times to repeat, must be positive, required. | |||||
| - **axis** (int) - The axis along which to repeat, default 0. | |||||
| Outputs: | |||||
| One tensor with values repeated along the specified axis. If x has shape | |||||
| (s1, s2, ..., sn) and axis is i, the output will have shape (s1, s2, ..., si * rep, ..., sn) | |||||
| Examples: | |||||
| >>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32) | |||||
| >>> output = C.RepeatElements(x, rep = 2, axis = 0) | |||||
| >>> print(output) | |||||
| [[0, 1, 2], | |||||
| [0, 1, 2], | |||||
| [3, 4, 5], | |||||
| [3, 4, 5]], | |||||
| """ | |||||
| const_utils.check_valid_type(F.dtype(x), mstype.number_type, 'input x') | |||||
| rep = _check_positive_int(rep, "rep", "repeat_elements") | |||||
| axis = _check_is_int(axis, "axis", "repeat_elements") | |||||
| shape_op = P.Shape() | |||||
| rank_op = P.Rank() | |||||
| tile_op = P.Tile() | |||||
| expand_dims_op = P.ExpandDims() | |||||
| reshape_op = P.Reshape() | |||||
| x_rank = rank_op(x) | |||||
| axis = _check_axis_range(axis, x_rank, "axis", "repeat_elements") | |||||
| expand_axis = axis + 1 | |||||
| x_expand = expand_dims_op(x, expand_axis) | |||||
| rep_dims = _cal_repeat_dims(x_rank, rep, expand_axis) | |||||
| x_expand = tile_op(x_expand, rep_dims) | |||||
| x_shape = shape_op(x) | |||||
| x_reshape = _cal_reshape(x_shape, rep, axis) | |||||
| x_rep = reshape_op(x_expand, x_reshape) | |||||
| return x_rep | |||||
| @@ -33,7 +33,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack, | |||||
| Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, UnsortedSegmentMax, | Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, UnsortedSegmentMax, | ||||
| UnsortedSegmentProd, UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace, | UnsortedSegmentProd, UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace, | ||||
| SpaceToBatchND, BatchToSpaceND, BroadcastTo, InplaceUpdate, ReverseSequence, EmbeddingLookup, | SpaceToBatchND, BatchToSpaceND, BroadcastTo, InplaceUpdate, ReverseSequence, EmbeddingLookup, | ||||
| Unique, GatherD, Identity, RepeatElements) | |||||
| Unique, GatherD, Identity) | |||||
| from .comm_ops import (AllGather, AllReduce, _AlltoAll, AllSwap, ReduceScatter, Broadcast, | from .comm_ops import (AllGather, AllReduce, _AlltoAll, AllSwap, ReduceScatter, Broadcast, | ||||
| _MirrorOperator, ReduceOp, _VirtualDataset, | _MirrorOperator, ReduceOp, _VirtualDataset, | ||||
| _VirtualDiv, _GetTensorSlice, _Send, _Receive, | _VirtualDiv, _GetTensorSlice, _Send, _Receive, | ||||
| @@ -390,7 +390,6 @@ __all__ = [ | |||||
| "Pull", | "Pull", | ||||
| "ReLUV2", | "ReLUV2", | ||||
| "SparseToDense", | "SparseToDense", | ||||
| "RepeatElements", | |||||
| ] | ] | ||||
| __all__.sort() | __all__.sort() | ||||
| @@ -1912,24 +1912,3 @@ class LRNGrad(PrimitiveWithInfer): | |||||
| def infer_shape(self, grads, x, y): | def infer_shape(self, grads, x, y): | ||||
| return x | return x | ||||
| class RepeatElementsGrad(PrimitiveWithInfer): | |||||
| """Gradients of RepeatElements operation.""" | |||||
| @prim_attr_register | |||||
| def __init__(self, rep, axis=0): | |||||
| self.init_prim_io_names(inputs=['dy'], outputs=['dx']) | |||||
| validator.check_value_type("rep", rep, [int], self.name) | |||||
| validator.check_value_type("axis", axis, [int], self.name) | |||||
| self.rep = rep | |||||
| self.axis = axis | |||||
| def infer_dtype(self, dy_type): | |||||
| validator.check_type_name("dy_type", dy_type, [mstype.float16, mstype.float32, mstype.int32], self.name) | |||||
| return dy_type | |||||
| def infer_shape(self, dy_shape): | |||||
| dx_shape = dy_shape | |||||
| dx_shape[self.axis] = dy_shape[self.axis] // self.rep | |||||
| return dx_shape | |||||
| @@ -4608,53 +4608,3 @@ class Identity(PrimitiveWithInfer): | |||||
| 'dtype': x['dtype'], | 'dtype': x['dtype'], | ||||
| 'value': None} | 'value': None} | ||||
| return out | return out | ||||
| class RepeatElements(PrimitiveWithInfer): | |||||
| """ | |||||
| Repeat elements of a tensor along an axis, like np.repeat. | |||||
| Args: | |||||
| rep (int): The number of times to repeat, must be positive, required. | |||||
| axis (int): The axis along which to repeat, default 0. | |||||
| Inputs: | |||||
| - **x** (Tensor) - The tensor to repeat values for. Must be of type int32 or float16. | |||||
| Outputs: | |||||
| One tensor with values repeated along the specified axis. If x has shape | |||||
| (s1, s2, ..., sn) and axis is i, the output will have shape (s1, s2, ..., si * rep, ..., sn) | |||||
| Examples: | |||||
| >>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32) | |||||
| >>> repeat_elements = P.RepeatElements(rep = 2, axis = 0) | |||||
| >>> output = repeat_elements(x) | |||||
| >>> print(output) | |||||
| [[0 1 2] | |||||
| [0 1 2] | |||||
| [3 4 5] | |||||
| [3 4 5]] | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self, rep, axis=0): | |||||
| self.init_prim_io_names(inputs=["x"], outputs=["output"]) | |||||
| validator.check_value_type("rep", rep, [int], self.name) | |||||
| self.rep = rep | |||||
| validator.check_value_type("axis", axis, [int], self.name) | |||||
| self.axis = axis | |||||
| def infer_shape(self, x_shape): | |||||
| validator.check("rep", self.rep, "", 0, Rel.GT, self.name) | |||||
| validator.check("axis", self.axis, "dimension of x", len(x_shape), Rel.LT, self.name) | |||||
| validator.check("axis", self.axis, "negative dimension of x", -len(x_shape), Rel.GE, self.name) | |||||
| x_shape[self.axis] *= self.rep | |||||
| return x_shape | |||||
| def infer_dtype(self, x_dtype): | |||||
| validator.check_subclass("x_dtype", x_dtype, mstype.tensor, self.name) | |||||
| return x_dtype | |||||
| @@ -1,321 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import pytest | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.ops.operations import _grad_ops as G | |||||
| import mindspore.nn as nn | |||||
| import mindspore.context as context | |||||
| class RepeatElementsNet(nn.Cell): | |||||
| def __init__(self, rep, axis): | |||||
| super(RepeatElementsNet, self).__init__() | |||||
| self.repeat_elements = P.RepeatElements(rep, axis) | |||||
| def construct(self, x): | |||||
| return self.repeat_elements(x) | |||||
| class RepeatElementsGradNet(nn.Cell): | |||||
| def __init__(self, rep, axis): | |||||
| super(RepeatElementsGradNet, self).__init__() | |||||
| self.repeat_elements_grad = G.RepeatElementsGrad(rep, axis) | |||||
| def construct(self, dy): | |||||
| return self.repeat_elements_grad(dy) | |||||
| def repeat_elements(x, rep, axis): | |||||
| repeat_elements_net = RepeatElementsNet(rep, axis) | |||||
| return repeat_elements_net(Tensor(x.astype(np.int32))).asnumpy() | |||||
| def repeat_elements_grad(dy, rep, axis): | |||||
| repeat_elements_grad_net = RepeatElementsGradNet(rep, axis) | |||||
| return repeat_elements_grad_net(Tensor(dy.astype(np.int32))).asnumpy() | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_1d_one_element_rep_1(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(1) | |||||
| ms_out = repeat_elements_grad(a, 1, 0) | |||||
| np_out = a.repeat(1, 0) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_1d_one_element_rep_many(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(1, 2) | |||||
| y = repeat_elements(a, 5, 0) | |||||
| print(y) | |||||
| ms_out = repeat_elements_grad(y, 5, 0) | |||||
| print(ms_out) | |||||
| np.testing.assert_array_equal(a*5, ms_out) | |||||
| y = repeat_elements(a, 513, 0) | |||||
| ms_out = repeat_elements_grad(y, 513, 0) | |||||
| np.testing.assert_array_equal(a*513, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_1d_rep_1(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(24) | |||||
| ms_out = repeat_elements_grad(a, 1, 0) | |||||
| np_out = a.repeat(1, 0) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_1d_rep_many(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(4) | |||||
| y = repeat_elements(a, 3, 0) | |||||
| ms_out = repeat_elements_grad(y, 3, 0) | |||||
| np.testing.assert_array_equal(a*3, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_2d_one_element_rep_1(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(1).reshape(1, 1) | |||||
| ms_out = repeat_elements_grad(a, 1, 0) | |||||
| np_out = a.repeat(1, 0) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| ms_out = repeat_elements_grad(a, 1, 1) | |||||
| np_out = a.repeat(1, 1) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_2d_one_element_rep_many(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(1).reshape(1, 1) | |||||
| y = repeat_elements(a, 13, 0) | |||||
| ms_out = repeat_elements_grad(y, 13, 0) | |||||
| np.testing.assert_array_equal(a*13, ms_out) | |||||
| y = repeat_elements(a, 13, 1) | |||||
| ms_out = repeat_elements_grad(y, 13, 1) | |||||
| np.testing.assert_array_equal(a*13, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_2d_rep_1(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(24).reshape(12, 2) | |||||
| ms_out = repeat_elements_grad(a, 1, 0) | |||||
| np_out = a.repeat(1, 0) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| ms_out = repeat_elements_grad(a, 1, 1) | |||||
| np_out = a.repeat(1, 1) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_2d_rep_many(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(24).reshape(8, 3) | |||||
| y = repeat_elements(a, 23, 0) | |||||
| ms_out = repeat_elements_grad(y, 23, 0) | |||||
| np.testing.assert_array_equal(a*23, ms_out) | |||||
| y = repeat_elements(a, 23, 1) | |||||
| ms_out = repeat_elements_grad(y, 23, 1) | |||||
| np.testing.assert_array_equal(a*23, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_5d_one_element_rep_1(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(1).reshape(1, 1, 1, 1, 1) | |||||
| ms_out = repeat_elements_grad(a, 1, 0) | |||||
| np_out = a.repeat(1, 0) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| ms_out = repeat_elements_grad(a, 1, 1) | |||||
| np_out = a.repeat(1, 1) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| ms_out = repeat_elements_grad(a, 1, 2) | |||||
| np_out = a.repeat(1, 2) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| ms_out = repeat_elements_grad(a, 1, 3) | |||||
| np_out = a.repeat(1, 3) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| ms_out = repeat_elements_grad(a, 1, 4) | |||||
| np_out = a.repeat(1, 4) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_5d_one_element_rep_many(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(1).reshape(1, 1, 1, 1, 1) | |||||
| y = repeat_elements(a, 19, 0) | |||||
| ms_out = repeat_elements_grad(y, 19, 0) | |||||
| np.testing.assert_array_equal(a, ms_out) | |||||
| y = repeat_elements(a, 19, 1) | |||||
| ms_out = repeat_elements_grad(y, 19, 1) | |||||
| np.testing.assert_array_equal(a, ms_out) | |||||
| y = repeat_elements(a, 19, 2) | |||||
| ms_out = repeat_elements_grad(y, 19, 2) | |||||
| np.testing.assert_array_equal(a, ms_out) | |||||
| y = repeat_elements(a, 19, 3) | |||||
| ms_out = repeat_elements_grad(y, 19, 3) | |||||
| np.testing.assert_array_equal(a, ms_out) | |||||
| y = repeat_elements(a, 19, 4) | |||||
| ms_out = repeat_elements_grad(y, 19, 4) | |||||
| np.testing.assert_array_equal(a, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_5d_rep_1(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(224).reshape(8, 2, 1, 7, 2) | |||||
| ms_out = repeat_elements_grad(a, 1, 0) | |||||
| np_out = a.repeat(1, 0) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| ms_out = repeat_elements_grad(a, 1, 1) | |||||
| np_out = a.repeat(1, 1) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| ms_out = repeat_elements_grad(a, 1, 2) | |||||
| np_out = a.repeat(1, 2) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| ms_out = repeat_elements_grad(a, 1, 3) | |||||
| np_out = a.repeat(1, 3) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| ms_out = repeat_elements_grad(a, 1, 4) | |||||
| np_out = a.repeat(1, 4) | |||||
| np.testing.assert_array_equal(np_out, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_5d_rep_many(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(224).reshape(1, 7, 4, 4, 2) | |||||
| y = repeat_elements(a, 7, 0) | |||||
| ms_out = repeat_elements_grad(y, 7, 0) | |||||
| np.testing.assert_array_equal(a*7, ms_out) | |||||
| y = repeat_elements(a, 7, 1) | |||||
| ms_out = repeat_elements_grad(y, 7, 1) | |||||
| np.testing.assert_array_equal(a*7, ms_out) | |||||
| y = repeat_elements(a, 7, 2) | |||||
| ms_out = repeat_elements_grad(y, 7, 2) | |||||
| np.testing.assert_array_equal(a*7, ms_out) | |||||
| y = repeat_elements(a, 7, 3) | |||||
| ms_out = repeat_elements_grad(y, 7, 3) | |||||
| np.testing.assert_array_equal(a*7, ms_out) | |||||
| y = repeat_elements(a, 7, 4) | |||||
| ms_out = repeat_elements_grad(y, 7, 4) | |||||
| np.testing.assert_array_equal(a*7, ms_out) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_repeat_elements_grad_half(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| a = np.arange(1152).astype(np.float16).reshape(4, 3, 4, 2, 1, 1, 4, 3) | |||||
| y = repeat_elements(a, 4, 0) | |||||
| ms_out = repeat_elements_grad(y, 4, 0) | |||||
| np.testing.assert_array_equal(a*4, ms_out) | |||||
| y = repeat_elements(a, 4, 1) | |||||
| ms_out = repeat_elements_grad(y, 4, 1) | |||||
| np.testing.assert_array_equal(a*4, ms_out) | |||||
| y = repeat_elements(a, 4, 2) | |||||
| ms_out = repeat_elements_grad(y, 4, 2) | |||||
| np.testing.assert_array_equal(a*4, ms_out) | |||||
| y = repeat_elements(a, 4, 3) | |||||
| ms_out = repeat_elements_grad(y, 4, 3) | |||||
| np.testing.assert_array_equal(a*4, ms_out) | |||||
| y = repeat_elements(a, 4, 4) | |||||
| ms_out = repeat_elements_grad(y, 4, 4) | |||||
| np.testing.assert_array_equal(a*4, ms_out) | |||||
| y = repeat_elements(a, 4, 5) | |||||
| ms_out = repeat_elements_grad(y, 4, 5) | |||||
| np.testing.assert_array_equal(a*4, ms_out) | |||||
| y = repeat_elements(a, 4, 6) | |||||
| ms_out = repeat_elements_grad(y, 4, 6) | |||||
| np.testing.assert_array_equal(a*4, ms_out) | |||||
| y = repeat_elements(a, 4, 7) | |||||
| ms_out = repeat_elements_grad(y, 4, 7) | |||||
| np.testing.assert_array_equal(a*4, ms_out) | |||||
| @@ -17,17 +17,18 @@ import numpy as np | |||||
| import pytest | import pytest | ||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| from mindspore.ops import operations as P | |||||
| from mindspore.ops import composite as C | |||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| import mindspore.context as context | import mindspore.context as context | ||||
| class RepeatElementsNet(nn.Cell): | class RepeatElementsNet(nn.Cell): | ||||
| def __init__(self, rep, axis): | def __init__(self, rep, axis): | ||||
| super(RepeatElementsNet, self).__init__() | super(RepeatElementsNet, self).__init__() | ||||
| self.repeat_elements = P.RepeatElements(rep, axis) | |||||
| self.rep = rep | |||||
| self.axis = axis | |||||
| def construct(self, x): | def construct(self, x): | ||||
| return self.repeat_elements(x) | |||||
| return C.repeat_elements(x, self.rep, self.axis) | |||||
| def repeat_elements(x, rep, axis): | def repeat_elements(x, rep, axis): | ||||
| @@ -1,86 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| import numpy as np | |||||
| import mindspore as ms | |||||
| from mindspore import context, Tensor, Parameter | |||||
| from mindspore.common.api import _executor | |||||
| from mindspore.nn import Cell, TrainOneStepCell, Momentum | |||||
| from mindspore.ops import operations as P | |||||
| class Net(Cell): | |||||
| def __init__(self, mul_weight, strategy1=None, strategy2=None): | |||||
| super().__init__() | |||||
| self.mul = P.Mul().shard(strategy1) | |||||
| self.repeat = P.RepeatElements(rep=2, axis=1).shard(strategy2) | |||||
| self.mul_weight = Parameter(mul_weight, "w1") | |||||
| def construct(self, x, b): | |||||
| out = self.mul(x, self.mul_weight) | |||||
| out = self.repeat(out) | |||||
| return out | |||||
| _x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | |||||
| _w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | |||||
| _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | |||||
| def compile_net(net): | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||||
| train_net = TrainOneStepCell(net, optimizer) | |||||
| train_net.set_auto_parallel() | |||||
| train_net.set_train() | |||||
| _executor.compile(train_net, _x, _b) | |||||
| context.reset_auto_parallel_context() | |||||
| def test_repeat_elements_data_parallel(): | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) | |||||
| strategy1 = ((16, 1, 1), (16, 1, 1)) | |||||
| strategy2 = ((16, 1, 1),) | |||||
| net = Net(_w1, strategy1, strategy2) | |||||
| compile_net(net) | |||||
| def test_repeat_elements_model_parallel(): | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) | |||||
| strategy1 = ((1, 1, 16), (1, 1, 16)) | |||||
| strategy2 = ((1, 1, 16),) | |||||
| net = Net(_w1, strategy1, strategy2) | |||||
| compile_net(net) | |||||
| def test_repeat_elements_hybrid_parallel(): | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) | |||||
| strategy1 = ((2, 2, 4), (2, 2, 4)) | |||||
| strategy2 = ((2, 2, 4),) | |||||
| net = Net(_w1, strategy1, strategy2) | |||||
| compile_net(net) | |||||
| def test_repeat_elements_auto_parallel(): | |||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) | |||||
| net = Net(_w1) | |||||
| compile_net(net) | |||||
| def test_repeat_elements_repeat_calc(): | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) | |||||
| strategy1 = ((2, 2, 4), (2, 2, 4)) | |||||
| strategy2 = ((1, 2, 2),) | |||||
| net = Net(_w1, strategy1, strategy2) | |||||
| compile_net(net) | |||||