| @@ -0,0 +1,89 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| """Test network turn on mix_precision.""" | |||
| import pytest | |||
| import numpy as np | |||
| from mindspore import nn | |||
| from mindspore import ops | |||
| from mindspore import amp | |||
| from mindspore import Tensor | |||
| from mindspore import context | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| class Net(nn.Cell): | |||
| def __init__(self, in_c, out_c): | |||
| super().__init__() | |||
| self.relu = nn.ReLU() | |||
| self.bn1 = nn.BatchNorm2d(num_features=in_c, | |||
| gamma_init='ones', | |||
| beta_init='zeros', | |||
| moving_mean_init='zeros', | |||
| moving_var_init='ones') | |||
| self.bn2 = nn.BatchNorm2d(num_features=out_c, | |||
| gamma_init='ones', | |||
| beta_init='zeros', | |||
| moving_mean_init='zeros', | |||
| moving_var_init='ones') | |||
| self.conv = nn.Conv2d(in_channels=in_c, | |||
| out_channels=out_c, | |||
| kernel_size=3, | |||
| stride=1, | |||
| has_bias=True, | |||
| pad_mode='same', | |||
| weight_init='ones', | |||
| bias_init='ones') | |||
| self.mean = ops.ReduceMean(keep_dims=False) | |||
| def construct(self, x): | |||
| x = self.relu(x) | |||
| x = self.bn1(x) | |||
| x = self.conv(x) | |||
| x = self.bn2(x) | |||
| x = self.relu(x) | |||
| x = self.mean(x, (2, 3)) | |||
| return x | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_auto_mix_precision(): | |||
| input_data = np.random.randn(32, 3, 224, 224).astype(np.float64) | |||
| label_data = np.random.randn(32, 10).astype(np.float32) | |||
| # graph mode | |||
| context.set_context(mode=context.GRAPH_MODE) | |||
| net = Net(3, 10) | |||
| opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.001, momentum=0.0009, weight_decay=0.001, | |||
| loss_scale=0.0001) | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=False) | |||
| train_network = amp.build_train_network(net, opt, loss, level="O3", | |||
| loss_scale_manager=FixedLossScaleManager(drop_overflow_update=False)) | |||
| out = train_network(Tensor(input_data), Tensor(label_data)) | |||
| # pynative mode | |||
| context.set_context(mode=context.PYNATIVE_MODE) | |||
| net_pynative = Net(3, 10) | |||
| opt_pynative = nn.Momentum(params=net_pynative.trainable_params(), learning_rate=0.001, momentum=0.0009, | |||
| weight_decay=0.001, | |||
| loss_scale=0.0001) | |||
| loss_pynative = nn.SoftmaxCrossEntropyWithLogits(sparse=False) | |||
| train_network_pynative = amp.build_train_network(net_pynative, opt_pynative, loss_pynative, level="O3", | |||
| loss_scale_manager=FixedLossScaleManager( | |||
| drop_overflow_update=False)) | |||
| out_pynative = train_network_pynative(Tensor(input_data), Tensor(label_data)) | |||
| assert np.allclose(out.asnumpy(), out_pynative.asnumpy(), 0.001, 0.001) | |||