|
|
|
@@ -0,0 +1,89 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
"""Test network turn on mix_precision.""" |
|
|
|
|
|
|
|
import pytest |
|
|
|
import numpy as np |
|
|
|
from mindspore import nn |
|
|
|
from mindspore import ops |
|
|
|
from mindspore import amp |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore import context |
|
|
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager |
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell): |
|
|
|
def __init__(self, in_c, out_c): |
|
|
|
super().__init__() |
|
|
|
self.relu = nn.ReLU() |
|
|
|
self.bn1 = nn.BatchNorm2d(num_features=in_c, |
|
|
|
gamma_init='ones', |
|
|
|
beta_init='zeros', |
|
|
|
moving_mean_init='zeros', |
|
|
|
moving_var_init='ones') |
|
|
|
self.bn2 = nn.BatchNorm2d(num_features=out_c, |
|
|
|
gamma_init='ones', |
|
|
|
beta_init='zeros', |
|
|
|
moving_mean_init='zeros', |
|
|
|
moving_var_init='ones') |
|
|
|
self.conv = nn.Conv2d(in_channels=in_c, |
|
|
|
out_channels=out_c, |
|
|
|
kernel_size=3, |
|
|
|
stride=1, |
|
|
|
has_bias=True, |
|
|
|
pad_mode='same', |
|
|
|
weight_init='ones', |
|
|
|
bias_init='ones') |
|
|
|
self.mean = ops.ReduceMean(keep_dims=False) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.relu(x) |
|
|
|
x = self.bn1(x) |
|
|
|
x = self.conv(x) |
|
|
|
x = self.bn2(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.mean(x, (2, 3)) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_auto_mix_precision(): |
|
|
|
input_data = np.random.randn(32, 3, 224, 224).astype(np.float64) |
|
|
|
label_data = np.random.randn(32, 10).astype(np.float32) |
|
|
|
# graph mode |
|
|
|
context.set_context(mode=context.GRAPH_MODE) |
|
|
|
net = Net(3, 10) |
|
|
|
opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.001, momentum=0.0009, weight_decay=0.001, |
|
|
|
loss_scale=0.0001) |
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=False) |
|
|
|
train_network = amp.build_train_network(net, opt, loss, level="O3", |
|
|
|
loss_scale_manager=FixedLossScaleManager(drop_overflow_update=False)) |
|
|
|
out = train_network(Tensor(input_data), Tensor(label_data)) |
|
|
|
|
|
|
|
# pynative mode |
|
|
|
context.set_context(mode=context.PYNATIVE_MODE) |
|
|
|
net_pynative = Net(3, 10) |
|
|
|
opt_pynative = nn.Momentum(params=net_pynative.trainable_params(), learning_rate=0.001, momentum=0.0009, |
|
|
|
weight_decay=0.001, |
|
|
|
loss_scale=0.0001) |
|
|
|
loss_pynative = nn.SoftmaxCrossEntropyWithLogits(sparse=False) |
|
|
|
train_network_pynative = amp.build_train_network(net_pynative, opt_pynative, loss_pynative, level="O3", |
|
|
|
loss_scale_manager=FixedLossScaleManager( |
|
|
|
drop_overflow_update=False)) |
|
|
|
out_pynative = train_network_pynative(Tensor(input_data), Tensor(label_data)) |
|
|
|
assert np.allclose(out.asnumpy(), out_pynative.asnumpy(), 0.001, 0.001) |