|
|
|
@@ -0,0 +1,45 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
"""export AIR file.""" |
|
|
|
import argparse |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore import context |
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net |
|
|
|
from mindspore.train.serialization import export |
|
|
|
|
|
|
|
from src.nets import net_factory |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser(description='checkpoint export') |
|
|
|
parser.add_argument('--checkpoint', type=str.lower, default='', help='checkpoint of deeplabv3 (Default: None)') |
|
|
|
parser.add_argument('--model', type=str.lower, default='deeplab_v3_s8', choices=['deeplab_v3_s16', 'deeplab_v3_s8'], |
|
|
|
help='Select model structure (Default: deeplab_v3_s8)') |
|
|
|
parser.add_argument('--num_classes', type=int, default=21, help='the number of classes (Default: 21)') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
if args.model == 'deeplab_v3_s16': |
|
|
|
network = net_factory.nets_map['deeplab_v3_s16']('eval', args.num_classes, 16, True) |
|
|
|
else: |
|
|
|
network = net_factory.nets_map['deeplab_v3_s8']('eval', args.num_classes, 8, True) |
|
|
|
param_dict = load_checkpoint(args.checkpoint) |
|
|
|
|
|
|
|
# load the parameter into net |
|
|
|
load_param_into_net(network, param_dict) |
|
|
|
input_data = np.random.uniform(0.0, 1.0, size=[32, 3, 513, 513]).astype(np.float32) |
|
|
|
export(network, Tensor(input_data), file_name=args.model+'-300_11.air', file_format='AIR') |