| @@ -0,0 +1,45 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """export AIR file.""" | |||||
| import argparse | |||||
| import numpy as np | |||||
| from mindspore import Tensor | |||||
| from mindspore import context | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from mindspore.train.serialization import export | |||||
| from src.nets import net_factory | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| if __name__ == '__main__': | |||||
| parser = argparse.ArgumentParser(description='checkpoint export') | |||||
| parser.add_argument('--checkpoint', type=str.lower, default='', help='checkpoint of deeplabv3 (Default: None)') | |||||
| parser.add_argument('--model', type=str.lower, default='deeplab_v3_s8', choices=['deeplab_v3_s16', 'deeplab_v3_s8'], | |||||
| help='Select model structure (Default: deeplab_v3_s8)') | |||||
| parser.add_argument('--num_classes', type=int, default=21, help='the number of classes (Default: 21)') | |||||
| args = parser.parse_args() | |||||
| if args.model == 'deeplab_v3_s16': | |||||
| network = net_factory.nets_map['deeplab_v3_s16']('eval', args.num_classes, 16, True) | |||||
| else: | |||||
| network = net_factory.nets_map['deeplab_v3_s8']('eval', args.num_classes, 8, True) | |||||
| param_dict = load_checkpoint(args.checkpoint) | |||||
| # load the parameter into net | |||||
| load_param_into_net(network, param_dict) | |||||
| input_data = np.random.uniform(0.0, 1.0, size=[32, 3, 513, 513]).astype(np.float32) | |||||
| export(network, Tensor(input_data), file_name=args.model+'-300_11.air', file_format='AIR') | |||||