| @@ -35,3 +35,5 @@ from .logical_not import LogicalNot, gpu_schedule_LogicalNot | |||
| from .logical_and import LogicalAnd, gpu_schedule_LogicalAnd | |||
| from .sub import Sub, gpu_schedule_Sub | |||
| from .less_equal import LessEqual, gpu_schedule_LessEqual | |||
| from .notequal import NotEqual, gpu_schedule_NotEqual | |||
| from .greater_equal import GreaterEqual, gpu_schedule_GreaterEqual | |||
| @@ -0,0 +1,41 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| """greater_equal""" | |||
| import _akg.tvm | |||
| from _akg.ops.math import greater_equal | |||
| from _akg.topi.generic import schedule_elemwise | |||
| def GreaterEqual(x, y): | |||
| """GreaterEqual.""" | |||
| return greater_equal.greater_equal(x, y) | |||
| def gpu_schedule_GreaterEqual(outs): | |||
| """ | |||
| GPU schedule for GreaterEqual. | |||
| Args: | |||
| outs (tvm.tensor.Tensor): Outputs of compute. | |||
| Returns: | |||
| sch (schedule.Schedule): The created schedule. | |||
| """ | |||
| device = 'cuda' | |||
| ctx = _akg.tvm.context(device, 0) | |||
| if not ctx.exist: | |||
| raise SystemError("Skip because %s is not enabled" % device) | |||
| with _akg.tvm.target.create(device): | |||
| sch = schedule_elemwise(outs) | |||
| return sch | |||
| @@ -0,0 +1,41 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| """notequal""" | |||
| import _akg.tvm | |||
| from _akg.ops.math import notequal | |||
| from _akg.topi.generic import schedule_elemwise | |||
| def NotEqual(x, y): | |||
| """notequal.""" | |||
| return notequal.notequal(x, y) | |||
| def gpu_schedule_NotEqual(outs): | |||
| """ | |||
| gpu schedule for NotEqual. | |||
| Args: | |||
| outs (tvm.tensor.Tensor): outputs of compute. | |||
| Returns: | |||
| sch (schedule.Schedule): The created schedule. | |||
| """ | |||
| device = 'cuda' | |||
| ctx = _akg.tvm.context(device, 0) | |||
| if not ctx.exist: | |||
| raise SystemError("Skip because %s is not enabled" % device) | |||
| with _akg.tvm.target.create(device): | |||
| sch = schedule_elemwise(outs) | |||
| return sch | |||
| @@ -0,0 +1,54 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| """operator dsl function: greaterequal""" | |||
| import _akg.tvm | |||
| import _akg.topi | |||
| from _akg.utils.dsl_create import produce_shapes | |||
| from _akg.utils import validation_check as vc_util | |||
| @vc_util.check_input_type(_akg.tvm.tensor.Tensor, _akg.tvm.tensor.Tensor) | |||
| def greater_equal(input1, input2): | |||
| """ | |||
| Check whether input1 greaterquals to input2. | |||
| Args: | |||
| input1 (tvm.tensor.Tensor): Tensor. | |||
| input2 (tvm.tensor.Tensor): Tensor. | |||
| Returns: | |||
| tvm.tensor.Tensor. If input1 greaterquals to input2 return True, else return False. | |||
| """ | |||
| shape1 = [x.value for x in input1.shape] | |||
| shape2 = [x.value for x in input2.shape] | |||
| vc_util.check_shape(shape1) | |||
| vc_util.check_shape(shape2) | |||
| shape1, shape2, shape = produce_shapes(shape1, shape2) | |||
| vc_util.elemwise_dtype_check(input1.dtype, input2.dtype) | |||
| dtype = input1.dtype | |||
| # get greaterquals compute | |||
| t_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(1, dtype), "T") | |||
| f_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(0, dtype), "F") | |||
| input1_bro = _akg.topi.broadcast_to(input1, shape) | |||
| input2_bro = _akg.topi.broadcast_to(input2, shape) | |||
| c_out = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.expr.Select(input1_bro[indice] >= input2_bro[indice], | |||
| t_value[indice], f_value[indice]), name="C") | |||
| res = _akg.tvm.compute(shape, lambda *indice: c_out(*indice).astype("bool"), name="res") | |||
| return res | |||
| @@ -0,0 +1,54 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| """operator dsl function: notequal""" | |||
| import _akg.tvm | |||
| import _akg.topi | |||
| from _akg.utils.dsl_create import produce_shapes | |||
| from _akg.utils import validation_check as vc_util | |||
| @vc_util.check_input_type(_akg.tvm.tensor.Tensor, _akg.tvm.tensor.Tensor) | |||
| def notequal(input1, input2): | |||
| """ | |||
| check whether input1 notequals to input2. | |||
| Args: | |||
| input1 (tvm.tensor.Tensor): Tensor. | |||
| input2 (tvm.tensor.Tensor): Tensor. | |||
| Returns: | |||
| tvm.tensor.Tensor. If input1 notequal to input2 return True, else return False. | |||
| """ | |||
| shape1 = [x.value for x in input1.shape] | |||
| shape2 = [x.value for x in input2.shape] | |||
| vc_util.check_shape(shape1) | |||
| vc_util.check_shape(shape2) | |||
| shape1, shape2, shape = produce_shapes(shape1, shape2) | |||
| vc_util.elemwise_dtype_check(input1.dtype, input2.dtype) | |||
| dtype = input1.dtype | |||
| # get notequal compute | |||
| t_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(1, dtype), "T") | |||
| f_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(0, dtype), "F") | |||
| input1_bro = _akg.topi.broadcast_to(input1, shape) | |||
| input2_bro = _akg.topi.broadcast_to(input2, shape) | |||
| c_out = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.expr.Select(input1_bro[indice] != input2_bro[indice], | |||
| t_value[indice], f_value[indice]), name="C") | |||
| res = _akg.tvm.compute(shape, lambda *indice: c_out(*indice).astype("bool"), name="res") | |||
| return res | |||
| @@ -32,3 +32,5 @@ from .logical_and import _logical_and_akg | |||
| from .logical_not import _logical_not_akg | |||
| from .logical_or import _logical_or_akg | |||
| from .lessequal import _lessequal_akg | |||
| from .notequal import _notequal_akg | |||
| from .greater_equal import _greater_equal_akg | |||
| @@ -0,0 +1,32 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| """GreaterEqual op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AkgRegOp, DataType | |||
| greater_equal_op_info = AkgRegOp("GreaterEqual") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "x") \ | |||
| .input(1, "y") \ | |||
| .output(0, "output") \ | |||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(greater_equal_op_info) | |||
| def _greater_equal_akg(): | |||
| """GreaterEqual register""" | |||
| return | |||
| @@ -15,7 +15,7 @@ | |||
| """LessEqual op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AkgRegOp, DataType | |||
| equal_op_info = AkgRegOp("LessEqual") \ | |||
| lessequal_op_info = AkgRegOp("LessEqual") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "x") \ | |||
| .input(1, "y") \ | |||
| @@ -26,7 +26,7 @@ equal_op_info = AkgRegOp("LessEqual") \ | |||
| .get_op_info() | |||
| @op_info_register(equal_op_info) | |||
| @op_info_register(lessequal_op_info) | |||
| def _lessequal_akg(): | |||
| """LessEqual register""" | |||
| return | |||
| @@ -0,0 +1,32 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| """NotEqual op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AkgRegOp, DataType | |||
| notequal_op_info = AkgRegOp("NotEqual") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "x") \ | |||
| .input(1, "y") \ | |||
| .output(0, "output") \ | |||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(notequal_op_info) | |||
| def _notequal_akg(): | |||
| """NotEqual AutoDiff register""" | |||
| return | |||
| @@ -30,6 +30,21 @@ class NetEqual(Cell): | |||
| def construct(self, x, y): | |||
| return self.Equal(x, y) | |||
| class NetNotEqual(Cell): | |||
| def __init__(self): | |||
| super(NetNotEqual, self).__init__() | |||
| self.NotEqual = P.NotEqual() | |||
| def construct(self, x, y): | |||
| return self.NotEqual(x, y) | |||
| class NetGreaterEqual(Cell): | |||
| def __init__(self): | |||
| super(NetGreaterEqual, self).__init__() | |||
| self.GreaterEqual = P.GreaterEqual() | |||
| def construct(self, x, y): | |||
| return self.GreaterEqual(x, y) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @@ -63,3 +78,45 @@ def test_equal(): | |||
| output1 = equal(x1, y1) | |||
| assert np.all(output1.asnumpy() == expect1) | |||
| assert output1.shape() == expect1.shape | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_notequal(): | |||
| x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) | |||
| y0 = Tensor(np.array([[1, 2]]).astype(np.float32)) | |||
| expect0 = np.array([[True, True], [False, True]]) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| notequal = NetNotEqual() | |||
| output0 = notequal(x0, y0) | |||
| assert np.all(output0.asnumpy() == expect0) | |||
| assert output0.shape() == expect0.shape | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| notequal = NetNotEqual() | |||
| output0 = notequal(x0, y0) | |||
| assert np.all(output0.asnumpy() == expect0) | |||
| assert output0.shape() == expect0.shape | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_greaterqual(): | |||
| x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) | |||
| y0 = Tensor(np.array([[1, 2]]).astype(np.float32)) | |||
| expect0 = np.array([[True, False], [True, False]]) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| gequal = NetGreaterEqual() | |||
| output0 = gequal(x0, y0) | |||
| assert np.all(output0.asnumpy() == expect0) | |||
| assert output0.shape() == expect0.shape | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| gequal = NetGreaterEqual() | |||
| output0 = gequal(x0, y0) | |||
| assert np.all(output0.asnumpy() == expect0) | |||
| assert output0.shape() == expect0.shape | |||