| @@ -35,3 +35,5 @@ from .logical_not import LogicalNot, gpu_schedule_LogicalNot | |||||
| from .logical_and import LogicalAnd, gpu_schedule_LogicalAnd | from .logical_and import LogicalAnd, gpu_schedule_LogicalAnd | ||||
| from .sub import Sub, gpu_schedule_Sub | from .sub import Sub, gpu_schedule_Sub | ||||
| from .less_equal import LessEqual, gpu_schedule_LessEqual | from .less_equal import LessEqual, gpu_schedule_LessEqual | ||||
| from .notequal import NotEqual, gpu_schedule_NotEqual | |||||
| from .greater_equal import GreaterEqual, gpu_schedule_GreaterEqual | |||||
| @@ -0,0 +1,41 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| """greater_equal""" | |||||
| import _akg.tvm | |||||
| from _akg.ops.math import greater_equal | |||||
| from _akg.topi.generic import schedule_elemwise | |||||
| def GreaterEqual(x, y): | |||||
| """GreaterEqual.""" | |||||
| return greater_equal.greater_equal(x, y) | |||||
| def gpu_schedule_GreaterEqual(outs): | |||||
| """ | |||||
| GPU schedule for GreaterEqual. | |||||
| Args: | |||||
| outs (tvm.tensor.Tensor): Outputs of compute. | |||||
| Returns: | |||||
| sch (schedule.Schedule): The created schedule. | |||||
| """ | |||||
| device = 'cuda' | |||||
| ctx = _akg.tvm.context(device, 0) | |||||
| if not ctx.exist: | |||||
| raise SystemError("Skip because %s is not enabled" % device) | |||||
| with _akg.tvm.target.create(device): | |||||
| sch = schedule_elemwise(outs) | |||||
| return sch | |||||
| @@ -0,0 +1,41 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| """notequal""" | |||||
| import _akg.tvm | |||||
| from _akg.ops.math import notequal | |||||
| from _akg.topi.generic import schedule_elemwise | |||||
| def NotEqual(x, y): | |||||
| """notequal.""" | |||||
| return notequal.notequal(x, y) | |||||
| def gpu_schedule_NotEqual(outs): | |||||
| """ | |||||
| gpu schedule for NotEqual. | |||||
| Args: | |||||
| outs (tvm.tensor.Tensor): outputs of compute. | |||||
| Returns: | |||||
| sch (schedule.Schedule): The created schedule. | |||||
| """ | |||||
| device = 'cuda' | |||||
| ctx = _akg.tvm.context(device, 0) | |||||
| if not ctx.exist: | |||||
| raise SystemError("Skip because %s is not enabled" % device) | |||||
| with _akg.tvm.target.create(device): | |||||
| sch = schedule_elemwise(outs) | |||||
| return sch | |||||
| @@ -0,0 +1,54 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| """operator dsl function: greaterequal""" | |||||
| import _akg.tvm | |||||
| import _akg.topi | |||||
| from _akg.utils.dsl_create import produce_shapes | |||||
| from _akg.utils import validation_check as vc_util | |||||
| @vc_util.check_input_type(_akg.tvm.tensor.Tensor, _akg.tvm.tensor.Tensor) | |||||
| def greater_equal(input1, input2): | |||||
| """ | |||||
| Check whether input1 greaterquals to input2. | |||||
| Args: | |||||
| input1 (tvm.tensor.Tensor): Tensor. | |||||
| input2 (tvm.tensor.Tensor): Tensor. | |||||
| Returns: | |||||
| tvm.tensor.Tensor. If input1 greaterquals to input2 return True, else return False. | |||||
| """ | |||||
| shape1 = [x.value for x in input1.shape] | |||||
| shape2 = [x.value for x in input2.shape] | |||||
| vc_util.check_shape(shape1) | |||||
| vc_util.check_shape(shape2) | |||||
| shape1, shape2, shape = produce_shapes(shape1, shape2) | |||||
| vc_util.elemwise_dtype_check(input1.dtype, input2.dtype) | |||||
| dtype = input1.dtype | |||||
| # get greaterquals compute | |||||
| t_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(1, dtype), "T") | |||||
| f_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(0, dtype), "F") | |||||
| input1_bro = _akg.topi.broadcast_to(input1, shape) | |||||
| input2_bro = _akg.topi.broadcast_to(input2, shape) | |||||
| c_out = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.expr.Select(input1_bro[indice] >= input2_bro[indice], | |||||
| t_value[indice], f_value[indice]), name="C") | |||||
| res = _akg.tvm.compute(shape, lambda *indice: c_out(*indice).astype("bool"), name="res") | |||||
| return res | |||||
| @@ -0,0 +1,54 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| """operator dsl function: notequal""" | |||||
| import _akg.tvm | |||||
| import _akg.topi | |||||
| from _akg.utils.dsl_create import produce_shapes | |||||
| from _akg.utils import validation_check as vc_util | |||||
| @vc_util.check_input_type(_akg.tvm.tensor.Tensor, _akg.tvm.tensor.Tensor) | |||||
| def notequal(input1, input2): | |||||
| """ | |||||
| check whether input1 notequals to input2. | |||||
| Args: | |||||
| input1 (tvm.tensor.Tensor): Tensor. | |||||
| input2 (tvm.tensor.Tensor): Tensor. | |||||
| Returns: | |||||
| tvm.tensor.Tensor. If input1 notequal to input2 return True, else return False. | |||||
| """ | |||||
| shape1 = [x.value for x in input1.shape] | |||||
| shape2 = [x.value for x in input2.shape] | |||||
| vc_util.check_shape(shape1) | |||||
| vc_util.check_shape(shape2) | |||||
| shape1, shape2, shape = produce_shapes(shape1, shape2) | |||||
| vc_util.elemwise_dtype_check(input1.dtype, input2.dtype) | |||||
| dtype = input1.dtype | |||||
| # get notequal compute | |||||
| t_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(1, dtype), "T") | |||||
| f_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(0, dtype), "F") | |||||
| input1_bro = _akg.topi.broadcast_to(input1, shape) | |||||
| input2_bro = _akg.topi.broadcast_to(input2, shape) | |||||
| c_out = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.expr.Select(input1_bro[indice] != input2_bro[indice], | |||||
| t_value[indice], f_value[indice]), name="C") | |||||
| res = _akg.tvm.compute(shape, lambda *indice: c_out(*indice).astype("bool"), name="res") | |||||
| return res | |||||
| @@ -32,3 +32,5 @@ from .logical_and import _logical_and_akg | |||||
| from .logical_not import _logical_not_akg | from .logical_not import _logical_not_akg | ||||
| from .logical_or import _logical_or_akg | from .logical_or import _logical_or_akg | ||||
| from .lessequal import _lessequal_akg | from .lessequal import _lessequal_akg | ||||
| from .notequal import _notequal_akg | |||||
| from .greater_equal import _greater_equal_akg | |||||
| @@ -0,0 +1,32 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| """GreaterEqual op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, AkgRegOp, DataType | |||||
| greater_equal_op_info = AkgRegOp("GreaterEqual") \ | |||||
| .fusion_type("OPAQUE") \ | |||||
| .input(0, "x") \ | |||||
| .input(1, "y") \ | |||||
| .output(0, "output") \ | |||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | |||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | |||||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | |||||
| .get_op_info() | |||||
| @op_info_register(greater_equal_op_info) | |||||
| def _greater_equal_akg(): | |||||
| """GreaterEqual register""" | |||||
| return | |||||
| @@ -15,7 +15,7 @@ | |||||
| """LessEqual op""" | """LessEqual op""" | ||||
| from mindspore.ops.op_info_register import op_info_register, AkgRegOp, DataType | from mindspore.ops.op_info_register import op_info_register, AkgRegOp, DataType | ||||
| equal_op_info = AkgRegOp("LessEqual") \ | |||||
| lessequal_op_info = AkgRegOp("LessEqual") \ | |||||
| .fusion_type("OPAQUE") \ | .fusion_type("OPAQUE") \ | ||||
| .input(0, "x") \ | .input(0, "x") \ | ||||
| .input(1, "y") \ | .input(1, "y") \ | ||||
| @@ -26,7 +26,7 @@ equal_op_info = AkgRegOp("LessEqual") \ | |||||
| .get_op_info() | .get_op_info() | ||||
| @op_info_register(equal_op_info) | |||||
| @op_info_register(lessequal_op_info) | |||||
| def _lessequal_akg(): | def _lessequal_akg(): | ||||
| """LessEqual register""" | """LessEqual register""" | ||||
| return | return | ||||
| @@ -0,0 +1,32 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| """NotEqual op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, AkgRegOp, DataType | |||||
| notequal_op_info = AkgRegOp("NotEqual") \ | |||||
| .fusion_type("OPAQUE") \ | |||||
| .input(0, "x") \ | |||||
| .input(1, "y") \ | |||||
| .output(0, "output") \ | |||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | |||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | |||||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | |||||
| .get_op_info() | |||||
| @op_info_register(notequal_op_info) | |||||
| def _notequal_akg(): | |||||
| """NotEqual AutoDiff register""" | |||||
| return | |||||
| @@ -30,6 +30,21 @@ class NetEqual(Cell): | |||||
| def construct(self, x, y): | def construct(self, x, y): | ||||
| return self.Equal(x, y) | return self.Equal(x, y) | ||||
| class NetNotEqual(Cell): | |||||
| def __init__(self): | |||||
| super(NetNotEqual, self).__init__() | |||||
| self.NotEqual = P.NotEqual() | |||||
| def construct(self, x, y): | |||||
| return self.NotEqual(x, y) | |||||
| class NetGreaterEqual(Cell): | |||||
| def __init__(self): | |||||
| super(NetGreaterEqual, self).__init__() | |||||
| self.GreaterEqual = P.GreaterEqual() | |||||
| def construct(self, x, y): | |||||
| return self.GreaterEqual(x, y) | |||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @pytest.mark.platform_x86_gpu_training | @pytest.mark.platform_x86_gpu_training | ||||
| @@ -63,3 +78,45 @@ def test_equal(): | |||||
| output1 = equal(x1, y1) | output1 = equal(x1, y1) | ||||
| assert np.all(output1.asnumpy() == expect1) | assert np.all(output1.asnumpy() == expect1) | ||||
| assert output1.shape() == expect1.shape | assert output1.shape() == expect1.shape | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_notequal(): | |||||
| x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) | |||||
| y0 = Tensor(np.array([[1, 2]]).astype(np.float32)) | |||||
| expect0 = np.array([[True, True], [False, True]]) | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||||
| notequal = NetNotEqual() | |||||
| output0 = notequal(x0, y0) | |||||
| assert np.all(output0.asnumpy() == expect0) | |||||
| assert output0.shape() == expect0.shape | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| notequal = NetNotEqual() | |||||
| output0 = notequal(x0, y0) | |||||
| assert np.all(output0.asnumpy() == expect0) | |||||
| assert output0.shape() == expect0.shape | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_greaterqual(): | |||||
| x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) | |||||
| y0 = Tensor(np.array([[1, 2]]).astype(np.float32)) | |||||
| expect0 = np.array([[True, False], [True, False]]) | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||||
| gequal = NetGreaterEqual() | |||||
| output0 = gequal(x0, y0) | |||||
| assert np.all(output0.asnumpy() == expect0) | |||||
| assert output0.shape() == expect0.shape | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| gequal = NetGreaterEqual() | |||||
| output0 = gequal(x0, y0) | |||||
| assert np.all(output0.asnumpy() == expect0) | |||||
| assert output0.shape() == expect0.shape | |||||