| @@ -123,3 +123,15 @@ Inference result will be stored in the example path, whose folder name is "infer | |||||
| ``` | ``` | ||||
| result: {'acc': 0.91446314102564111} ckpt=~/resnet50_cifar10/train_parallel0/resnet-90_195.ckpt | result: {'acc': 0.91446314102564111} ckpt=~/resnet50_cifar10/train_parallel0/resnet-90_195.ckpt | ||||
| ``` | ``` | ||||
| ### Running on GPU | |||||
| ``` | |||||
| # distributed training example | |||||
| mpirun -n 8 python train.py --dataset_path=~/cifar-10-batches-bin --device_target="GPU" --run_distribute=True | |||||
| # standalone training example | |||||
| python train.py --dataset_path=~/cifar-10-batches-bin --device_target="GPU" | |||||
| # infer example | |||||
| python eval.py --dataset_path=~/cifar10-10-verify-bin --device_target="GPU" --checkpoint_path=resnet-90_195.ckpt | |||||
| ``` | |||||
| @@ -20,10 +20,11 @@ import mindspore.common.dtype as mstype | |||||
| import mindspore.dataset.engine as de | import mindspore.dataset.engine as de | ||||
| import mindspore.dataset.transforms.vision.c_transforms as C | import mindspore.dataset.transforms.vision.c_transforms as C | ||||
| import mindspore.dataset.transforms.c_transforms as C2 | import mindspore.dataset.transforms.c_transforms as C2 | ||||
| from mindspore.communication.management import get_rank, get_group_size | |||||
| from config import config | from config import config | ||||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32): | |||||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): | |||||
| """ | """ | ||||
| create a train or eval dataset | create a train or eval dataset | ||||
| @@ -32,12 +33,17 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32): | |||||
| do_train(bool): whether dataset is used for train or eval. | do_train(bool): whether dataset is used for train or eval. | ||||
| repeat_num(int): the repeat times of dataset. Default: 1 | repeat_num(int): the repeat times of dataset. Default: 1 | ||||
| batch_size(int): the batch size of dataset. Default: 32 | batch_size(int): the batch size of dataset. Default: 32 | ||||
| target(str): the device target. Default: Ascend | |||||
| Returns: | Returns: | ||||
| dataset | dataset | ||||
| """ | """ | ||||
| device_num = int(os.getenv("DEVICE_NUM")) | |||||
| rank_id = int(os.getenv("RANK_ID")) | |||||
| if target == "Ascend": | |||||
| device_num = int(os.getenv("DEVICE_NUM")) | |||||
| rank_id = int(os.getenv("RANK_ID")) | |||||
| else: | |||||
| rank_id = get_rank() | |||||
| device_num = get_group_size() | |||||
| if device_num == 1: | if device_num == 1: | ||||
| ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True) | ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True) | ||||
| @@ -25,7 +25,7 @@ from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||||
| from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | ||||
| from mindspore.train.model import Model, ParallelMode | from mindspore.train.model import Model, ParallelMode | ||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
| from mindspore.communication.management import init | |||||
| from mindspore.communication.management import init, get_group_size | |||||
| parser = argparse.ArgumentParser(description='Image classification') | parser = argparse.ArgumentParser(description='Image classification') | ||||
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | ||||
| @@ -34,26 +34,32 @@ parser.add_argument('--do_train', type=bool, default=False, help='Do train or no | |||||
| parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.') | parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.') | ||||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | ||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | ||||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||||
| args_opt = parser.parse_args() | args_opt = parser.parse_args() | ||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) | |||||
| context.set_context(device_id=device_id) | |||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||
| target = args_opt.device_target | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False) | |||||
| if not args_opt.do_eval and args_opt.run_distribute: | if not args_opt.do_eval and args_opt.run_distribute: | ||||
| context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| mirror_mean=True) | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([140]) | |||||
| init() | |||||
| if target == "Ascend": | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(device_id=device_id) | |||||
| context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| mirror_mean=True) | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([140]) | |||||
| init() | |||||
| elif target == "GPU": | |||||
| init("nccl") | |||||
| context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| mirror_mean=True) | |||||
| epoch_size = config.epoch_size | epoch_size = config.epoch_size | ||||
| net = resnet50(class_num=config.class_num) | net = resnet50(class_num=config.class_num) | ||||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True) | loss = SoftmaxCrossEntropyWithLogits(sparse=True) | ||||
| if args_opt.do_eval: | if args_opt.do_eval: | ||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size) | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size, | |||||
| target=target) | |||||
| step_size = dataset.get_dataset_size() | step_size = dataset.get_dataset_size() | ||||
| if args_opt.checkpoint_path: | if args_opt.checkpoint_path: | ||||
| @@ -29,7 +29,7 @@ from mindspore.train.model import Model, ParallelMode | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | ||||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | from mindspore.train.loss_scale_manager import FixedLossScaleManager | ||||
| from mindspore.communication.management import init | |||||
| from mindspore.communication.management import init, get_rank, get_group_size | |||||
| parser = argparse.ArgumentParser(description='Image classification') | parser = argparse.ArgumentParser(description='Image classification') | ||||
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | ||||
| @@ -37,28 +37,37 @@ parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||||
| parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') | parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') | ||||
| parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') | parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') | ||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | ||||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||||
| args_opt = parser.parse_args() | args_opt = parser.parse_args() | ||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id, | |||||
| enable_auto_mixed_precision=True) | |||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||
| target = args_opt.device_target | |||||
| if not args_opt.do_eval and args_opt.run_distribute: | if not args_opt.do_eval and args_opt.run_distribute: | ||||
| context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| mirror_mean=True) | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160]) | |||||
| init() | |||||
| if target == "Ascend": | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id, | |||||
| enable_auto_mixed_precision=True) | |||||
| init() | |||||
| context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| mirror_mean=True) | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160]) | |||||
| ckpt_save_dir = config.save_checkpoint_path | |||||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||||
| elif target == "GPU": | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False) | |||||
| init("nccl") | |||||
| context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| mirror_mean=True) | |||||
| ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/" | |||||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True, is_grad=False, reduction='mean') | |||||
| epoch_size = config.epoch_size | epoch_size = config.epoch_size | ||||
| net = resnet50(class_num=config.class_num) | net = resnet50(class_num=config.class_num) | ||||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||||
| if args_opt.do_train: | if args_opt.do_train: | ||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, | dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, | ||||
| repeat_num=epoch_size, batch_size=config.batch_size) | |||||
| repeat_num=epoch_size, batch_size=config.batch_size, target=target) | |||||
| step_size = dataset.get_dataset_size() | step_size = dataset.get_dataset_size() | ||||
| loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | ||||
| @@ -67,9 +76,11 @@ if __name__ == '__main__': | |||||
| lr_decay_mode='poly')) | lr_decay_mode='poly')) | ||||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | ||||
| config.weight_decay, config.loss_scale) | config.weight_decay, config.loss_scale) | ||||
| model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}, amp_level="O2", | |||||
| keep_batchnorm_fp32=False) | |||||
| if target == 'GPU': | |||||
| model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) | |||||
| else: | |||||
| model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}, | |||||
| amp_level="O2", keep_batchnorm_fp32=True) | |||||
| time_cb = TimeMonitor(data_size=step_size) | time_cb = TimeMonitor(data_size=step_size) | ||||
| loss_cb = LossMonitor() | loss_cb = LossMonitor() | ||||
| @@ -77,6 +88,6 @@ if __name__ == '__main__': | |||||
| if config.save_checkpoint: | if config.save_checkpoint: | ||||
| config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps, | config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps, | ||||
| keep_checkpoint_max=config.keep_checkpoint_max) | keep_checkpoint_max=config.keep_checkpoint_max) | ||||
| ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck) | |||||
| ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck) | |||||
| cb += [ckpt_cb] | cb += [ckpt_cb] | ||||
| model.train(epoch_size, dataset, callbacks=cb) | model.train(epoch_size, dataset, callbacks=cb) | ||||
| @@ -133,3 +133,18 @@ Inference result will be stored in the example path, whose folder name is "infer | |||||
| ``` | ``` | ||||
| result: {'acc': 0.7671054737516005} ckpt=train_parallel0/resnet-90_5004.ckpt | result: {'acc': 0.7671054737516005} ckpt=train_parallel0/resnet-90_5004.ckpt | ||||
| ``` | ``` | ||||
| ### Running on GPU | |||||
| ``` | |||||
| # distributed training example | |||||
| mpirun -n 8 python train.py --dataset_path=dataset/ilsvrc/train --device_target="GPU" --run_distribute=True | |||||
| # standalone training example | |||||
| python train.py --dataset_path=dataset/ilsvrc/train --device_target="GPU" | |||||
| # standalone training example with pretrained checkpoint | |||||
| python train.py --dataset_path=dataset/ilsvrc/train --device_target="GPU" --pre_trained=pretrained.ckpt | |||||
| # infer example | |||||
| python eval.py --dataset_path=dataset/ilsvrc/val --device_target="GPU" --checkpoint_path=resnet-90_5004ss.ckpt | |||||
| ``` | |||||
| @@ -20,9 +20,9 @@ import mindspore.common.dtype as mstype | |||||
| import mindspore.dataset.engine as de | import mindspore.dataset.engine as de | ||||
| import mindspore.dataset.transforms.vision.c_transforms as C | import mindspore.dataset.transforms.vision.c_transforms as C | ||||
| import mindspore.dataset.transforms.c_transforms as C2 | import mindspore.dataset.transforms.c_transforms as C2 | ||||
| from mindspore.communication.management import get_rank, get_group_size | |||||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32): | |||||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): | |||||
| """ | """ | ||||
| create a train or eval dataset | create a train or eval dataset | ||||
| @@ -31,12 +31,17 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32): | |||||
| do_train(bool): whether dataset is used for train or eval. | do_train(bool): whether dataset is used for train or eval. | ||||
| repeat_num(int): the repeat times of dataset. Default: 1 | repeat_num(int): the repeat times of dataset. Default: 1 | ||||
| batch_size(int): the batch size of dataset. Default: 32 | batch_size(int): the batch size of dataset. Default: 32 | ||||
| target(str): the device target. Default: Ascend | |||||
| Returns: | Returns: | ||||
| dataset | dataset | ||||
| """ | """ | ||||
| device_num = int(os.getenv("DEVICE_NUM")) | |||||
| rank_id = int(os.getenv("RANK_ID")) | |||||
| if target == "Ascend": | |||||
| device_num = int(os.getenv("DEVICE_NUM")) | |||||
| rank_id = int(os.getenv("RANK_ID")) | |||||
| else: | |||||
| rank_id = get_rank() | |||||
| device_num = get_group_size() | |||||
| if device_num == 1: | if device_num == 1: | ||||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) | ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) | ||||
| @@ -32,12 +32,13 @@ parser.add_argument('--do_train', type=bool, default=False, help='Do train or no | |||||
| parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.') | parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.') | ||||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | ||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | ||||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||||
| args_opt = parser.parse_args() | args_opt = parser.parse_args() | ||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) | |||||
| context.set_context(device_id=device_id) | |||||
| target = args_opt.device_target | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False) | |||||
| if target == "Ascend": | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(device_id=device_id) | |||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||
| @@ -47,7 +48,8 @@ if __name__ == '__main__': | |||||
| loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) | loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) | ||||
| if args_opt.do_eval: | if args_opt.do_eval: | ||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size) | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size, | |||||
| target=target) | |||||
| step_size = dataset.get_dataset_size() | step_size = dataset.get_dataset_size() | ||||
| if args_opt.checkpoint_path: | if args_opt.checkpoint_path: | ||||
| @@ -29,7 +29,7 @@ from mindspore.train.model import Model, ParallelMode | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | ||||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | from mindspore.train.loss_scale_manager import FixedLossScaleManager | ||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
| from mindspore.communication.management import init | |||||
| from mindspore.communication.management import init, get_rank, get_group_size | |||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| import mindspore.common.initializer as weight_init | import mindspore.common.initializer as weight_init | ||||
| from crossentropy import CrossEntropy | from crossentropy import CrossEntropy | ||||
| @@ -40,21 +40,28 @@ parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||||
| parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') | parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') | ||||
| parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') | parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') | ||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | ||||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||||
| parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') | parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') | ||||
| args_opt = parser.parse_args() | args_opt = parser.parse_args() | ||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id, | |||||
| enable_auto_mixed_precision=True) | |||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||
| target = args_opt.device_target | |||||
| if not args_opt.do_eval and args_opt.run_distribute: | if not args_opt.do_eval and args_opt.run_distribute: | ||||
| context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| mirror_mean=True, parameter_broadcast=True) | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160]) | |||||
| init() | |||||
| if target == "Ascend": | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id, | |||||
| enable_auto_mixed_precision=True) | |||||
| init() | |||||
| context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| mirror_mean=True) | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160]) | |||||
| ckpt_save_dir = config.save_checkpoint_path | |||||
| elif target == "GPU": | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False) | |||||
| init("nccl") | |||||
| context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| mirror_mean=True) | |||||
| ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/" | |||||
| epoch_size = config.epoch_size | epoch_size = config.epoch_size | ||||
| net = resnet50(class_num=config.class_num) | net = resnet50(class_num=config.class_num) | ||||
| @@ -81,7 +88,7 @@ if __name__ == '__main__': | |||||
| if args_opt.do_train: | if args_opt.do_train: | ||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, | dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, | ||||
| repeat_num=epoch_size, batch_size=config.batch_size) | |||||
| repeat_num=epoch_size, batch_size=config.batch_size, target=target) | |||||
| step_size = dataset.get_dataset_size() | step_size = dataset.get_dataset_size() | ||||
| loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | ||||
| @@ -93,9 +100,11 @@ if __name__ == '__main__': | |||||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | ||||
| config.weight_decay, config.loss_scale) | config.weight_decay, config.loss_scale) | ||||
| model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}, amp_level="O2", | |||||
| keep_batchnorm_fp32=False) | |||||
| if target == "Ascend": | |||||
| model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}, | |||||
| amp_level="O2", keep_batchnorm_fp32=False) | |||||
| elif target == "GPU": | |||||
| model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}) | |||||
| time_cb = TimeMonitor(data_size=step_size) | time_cb = TimeMonitor(data_size=step_size) | ||||
| @@ -104,6 +113,6 @@ if __name__ == '__main__': | |||||
| if config.save_checkpoint: | if config.save_checkpoint: | ||||
| config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size, | config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size, | ||||
| keep_checkpoint_max=config.keep_checkpoint_max) | keep_checkpoint_max=config.keep_checkpoint_max) | ||||
| ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck) | |||||
| ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck) | |||||
| cb += [ckpt_cb] | cb += [ckpt_cb] | ||||
| model.train(epoch_size, dataset, callbacks=cb) | model.train(epoch_size, dataset, callbacks=cb) | ||||