| @@ -20,14 +20,14 @@ import mindspore | |||
| from mindspore import context, Tensor | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net, export | |||
| from src.centerface import CenterfaceMobilev2 | |||
| from src.centerface import CenterfaceMobilev2, CenterFaceWithNms | |||
| from src.config import ConfigCenterface | |||
| parser = argparse.ArgumentParser(description='centerface export') | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||
| parser.add_argument("--batch_size", type=int, default=1, help="batch size") | |||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | |||
| parser.add_argument("--file_name", type=str, default="centerface.air", help="output file name.") | |||
| parser.add_argument("--file_name", type=str, default="centerface", help="output file name.") | |||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | |||
| args = parser.parse_args() | |||
| @@ -48,6 +48,7 @@ if __name__ == '__main__': | |||
| param_dict_new[key] = values | |||
| load_param_into_net(net, param_dict_new) | |||
| net = CenterFaceWithNms(net) | |||
| net.set_train(False) | |||
| input_data = Tensor(np.zeros([args.batch_size, 3, config.input_h, config.input_w]), mindspore.float32) | |||
| @@ -0,0 +1,57 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import argparse | |||
| import numpy as np | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore import context, Tensor | |||
| from mindspore.train.serialization import export, load_checkpoint, load_param_into_net | |||
| from src.network import DenseNet121 | |||
| from src.config import config | |||
| parser = argparse.ArgumentParser(description="densenet121 export") | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||
| parser.add_argument("--batch_size", type=int, default=32, help="batch size") | |||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | |||
| parser.add_argument("--file_name", type=str, default="densenet121", help="output file name.") | |||
| parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") | |||
| args = parser.parse_args() | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) | |||
| if __name__ == "__main__": | |||
| network = DenseNet121(config.num_classes) | |||
| param_dict = load_checkpoint(args.ckpt_file) | |||
| param_dict_new = {} | |||
| for key, value in param_dict.items(): | |||
| if key.startswith("moments."): | |||
| continue | |||
| elif key.startswith("network."): | |||
| param_dict_new[key[8:]] = value | |||
| else: | |||
| param_dict_new[key] = value | |||
| load_param_into_net(network, param_dict_new) | |||
| network.add_flags_recursive(fp16=True) | |||
| network.set_train(False) | |||
| shape = [int(args.batch_size), 3] + [int(config.image_size.split(",")[0]), int(config.image_size.split(",")[1])] | |||
| input_data = Tensor(np.zeros(shape), mstype.float32) | |||
| export(network, input_data, file_name=args.file_name, file_format=args.file_format) | |||
| @@ -0,0 +1,51 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import argparse | |||
| import numpy as np | |||
| from mindspore import context, Tensor | |||
| from mindspore.train.serialization import export, load_checkpoint, load_param_into_net | |||
| from mindspore.compression.quant import QuantizationAwareTraining | |||
| from src.config import config_quant | |||
| from modelsresnet_quant_manual import resnet50_quant | |||
| parser = argparse.ArgumentParser(description='resnet50_quant export') | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||
| parser.add_argument("--batch_size", type=int, default=1, help="batch size") | |||
| parser.add_argument("--img_size", type=int, default=224, help="image size") | |||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | |||
| parser.add_argument("--file_name", type=str, default="resnet50_quant", help="output file name.") | |||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='MINDIR', help='file format') | |||
| args = parser.parse_args() | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) | |||
| if __name__ == "__main__": | |||
| config = config_quant | |||
| network = resnet50_quant(class_num=config.class_num) | |||
| quantizer = QuantizationAwareTraining(bn_fold=True, per_channel=[True, False], symmetric=[True, False]) | |||
| network = quantizer.quantize(network) | |||
| param_dict = load_checkpoint(args.ckpt_file) | |||
| load_param_into_net(network, param_dict) | |||
| network.set_train(False) | |||
| shape = [config.batch_size, 3] + [args.img_size, args.img_size] | |||
| input_data = Tensor(np.zeros(shape).astype(np.float32)) | |||
| export(network, input_data, file_name=args.file_name, file_format=args.file_format) | |||
| @@ -12,8 +12,9 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """export checkpoint file into air models""" | |||
| """ export checkpoint file into models""" | |||
| import argparse | |||
| import numpy as np | |||
| from mindspore import Tensor, context | |||
| @@ -23,7 +24,14 @@ from src.transformer_model import TransformerModel | |||
| from src.eval_config import cfg, transformer_net_cfg | |||
| from eval import load_weights | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| parser = argparse.ArgumentParser(description='transformer export') | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||
| parser.add_argument("--batch_size", type=int, default=1, help="batch size") | |||
| parser.add_argument("--file_name", type=str, default="transformer", help="output file name.") | |||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | |||
| args = parser.parse_args() | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) | |||
| if __name__ == '__main__': | |||
| tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False) | |||
| @@ -31,9 +39,9 @@ if __name__ == '__main__': | |||
| parameter_dict = load_weights(cfg.model_file) | |||
| load_param_into_net(tfm_model, parameter_dict) | |||
| source_ids = Tensor(np.ones((1, 128)).astype(np.int32)) | |||
| source_mask = Tensor(np.ones((1, 128)).astype(np.int32)) | |||
| source_ids = Tensor(np.ones((args.batch_size, transformer_net_cfg.seq_length)).astype(np.int32)) | |||
| source_mask = Tensor(np.ones((args.batch_size, transformer_net_cfg.seq_length)).astype(np.int32)) | |||
| dec_len = transformer_net_cfg.max_decode_length | |||
| export(tfm_model, source_ids, source_mask, file_name="len" + str(dec_len) + ".air", file_format="AIR") | |||
| export(tfm_model, source_ids, source_mask, file_name=args.file_name + str(dec_len), file_format=args.file_format) | |||