diff --git a/model_zoo/official/cv/centerface/export.py b/model_zoo/official/cv/centerface/export.py index 12e16834ff..0f46f1b83d 100644 --- a/model_zoo/official/cv/centerface/export.py +++ b/model_zoo/official/cv/centerface/export.py @@ -20,14 +20,14 @@ import mindspore from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net, export -from src.centerface import CenterfaceMobilev2 +from src.centerface import CenterfaceMobilev2, CenterFaceWithNms from src.config import ConfigCenterface parser = argparse.ArgumentParser(description='centerface export') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") -parser.add_argument("--file_name", type=str, default="centerface.air", help="output file name.") +parser.add_argument("--file_name", type=str, default="centerface", help="output file name.") parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') args = parser.parse_args() @@ -48,6 +48,7 @@ if __name__ == '__main__': param_dict_new[key] = values load_param_into_net(net, param_dict_new) + net = CenterFaceWithNms(net) net.set_train(False) input_data = Tensor(np.zeros([args.batch_size, 3, config.input_h, config.input_w]), mindspore.float32) diff --git a/model_zoo/official/cv/densenet121/export.py b/model_zoo/official/cv/densenet121/export.py new file mode 100644 index 0000000000..329f5b084a --- /dev/null +++ b/model_zoo/official/cv/densenet121/export.py @@ -0,0 +1,57 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +import argparse +import numpy as np + +from mindspore.common import dtype as mstype +from mindspore import context, Tensor +from mindspore.train.serialization import export, load_checkpoint, load_param_into_net + +from src.network import DenseNet121 +from src.config import config + +parser = argparse.ArgumentParser(description="densenet121 export") +parser.add_argument("--device_id", type=int, default=0, help="Device id") +parser.add_argument("--batch_size", type=int, default=32, help="batch size") +parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") +parser.add_argument("--file_name", type=str, default="densenet121", help="output file name.") +parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") +args = parser.parse_args() + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) + +if __name__ == "__main__": + network = DenseNet121(config.num_classes) + + param_dict = load_checkpoint(args.ckpt_file) + + param_dict_new = {} + for key, value in param_dict.items(): + if key.startswith("moments."): + continue + elif key.startswith("network."): + param_dict_new[key[8:]] = value + else: + param_dict_new[key] = value + + load_param_into_net(network, param_dict_new) + + network.add_flags_recursive(fp16=True) + network.set_train(False) + + shape = [int(args.batch_size), 3] + [int(config.image_size.split(",")[0]), int(config.image_size.split(",")[1])] + input_data = Tensor(np.zeros(shape), mstype.float32) + + export(network, input_data, file_name=args.file_name, file_format=args.file_format) diff --git a/model_zoo/official/cv/resnet50_quant/export.py b/model_zoo/official/cv/resnet50_quant/export.py new file mode 100644 index 0000000000..ff4f161b79 --- /dev/null +++ b/model_zoo/official/cv/resnet50_quant/export.py @@ -0,0 +1,51 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +import argparse +import numpy as np + +from mindspore import context, Tensor +from mindspore.train.serialization import export, load_checkpoint, load_param_into_net +from mindspore.compression.quant import QuantizationAwareTraining + +from src.config import config_quant +from modelsresnet_quant_manual import resnet50_quant + +parser = argparse.ArgumentParser(description='resnet50_quant export') +parser.add_argument("--device_id", type=int, default=0, help="Device id") +parser.add_argument("--batch_size", type=int, default=1, help="batch size") +parser.add_argument("--img_size", type=int, default=224, help="image size") +parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") +parser.add_argument("--file_name", type=str, default="resnet50_quant", help="output file name.") +parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='MINDIR', help='file format') +args = parser.parse_args() + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) + +if __name__ == "__main__": + config = config_quant + + network = resnet50_quant(class_num=config.class_num) + + quantizer = QuantizationAwareTraining(bn_fold=True, per_channel=[True, False], symmetric=[True, False]) + network = quantizer.quantize(network) + + param_dict = load_checkpoint(args.ckpt_file) + load_param_into_net(network, param_dict) + + network.set_train(False) + shape = [config.batch_size, 3] + [args.img_size, args.img_size] + input_data = Tensor(np.zeros(shape).astype(np.float32)) + + export(network, input_data, file_name=args.file_name, file_format=args.file_format) diff --git a/model_zoo/official/nlp/transformer/export.py b/model_zoo/official/nlp/transformer/export.py index 0d462b9406..3342ae14e9 100644 --- a/model_zoo/official/nlp/transformer/export.py +++ b/model_zoo/official/nlp/transformer/export.py @@ -12,8 +12,9 @@ # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ -"""export checkpoint file into air models""" +""" export checkpoint file into models""" +import argparse import numpy as np from mindspore import Tensor, context @@ -23,7 +24,14 @@ from src.transformer_model import TransformerModel from src.eval_config import cfg, transformer_net_cfg from eval import load_weights -context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") +parser = argparse.ArgumentParser(description='transformer export') +parser.add_argument("--device_id", type=int, default=0, help="Device id") +parser.add_argument("--batch_size", type=int, default=1, help="batch size") +parser.add_argument("--file_name", type=str, default="transformer", help="output file name.") +parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') +args = parser.parse_args() + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) if __name__ == '__main__': tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False) @@ -31,9 +39,9 @@ if __name__ == '__main__': parameter_dict = load_weights(cfg.model_file) load_param_into_net(tfm_model, parameter_dict) - source_ids = Tensor(np.ones((1, 128)).astype(np.int32)) - source_mask = Tensor(np.ones((1, 128)).astype(np.int32)) + source_ids = Tensor(np.ones((args.batch_size, transformer_net_cfg.seq_length)).astype(np.int32)) + source_mask = Tensor(np.ones((args.batch_size, transformer_net_cfg.seq_length)).astype(np.int32)) dec_len = transformer_net_cfg.max_decode_length - export(tfm_model, source_ids, source_mask, file_name="len" + str(dec_len) + ".air", file_format="AIR") + export(tfm_model, source_ids, source_mask, file_name=args.file_name + str(dec_len), file_format=args.file_format)