| @@ -0,0 +1,88 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/sgd_cpu_kernel.h" | |||
| #include <thread> | |||
| #include <vector> | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| namespace { | |||
| constexpr size_t kInputSize = 6; | |||
| constexpr size_t kOutputSize = 1; | |||
| } // namespace | |||
| template <typename T> | |||
| void SGDCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) { | |||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||
| dampening_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "dampening"); | |||
| weight_decay_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "weight_decay"); | |||
| nesterov_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "nesterov"); | |||
| } | |||
| template <typename T> | |||
| void SGDCPUKernel<T>::CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) { | |||
| // inputs: params, grad, lr, accum, momentum, stat | |||
| if (inputs.size() != kInputSize) { | |||
| MS_LOG(EXCEPTION) << "Input number is " << inputs.size() << ", but SGD needs 6 inputs."; | |||
| } | |||
| // output: param | |||
| if (outputs.size() != kOutputSize) { | |||
| MS_LOG(EXCEPTION) << "Output number is " << outputs.size() << ", but SGD needs 1 outputs."; | |||
| } | |||
| } | |||
| template <typename T> | |||
| bool SGDCPUKernel<T>::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> & /*workspace*/, | |||
| const std::vector<AddressPtr> &outputs) { | |||
| CheckParam(inputs, outputs); | |||
| auto param = reinterpret_cast<T *>(inputs[0]->addr); | |||
| auto grad = reinterpret_cast<T *>(inputs[1]->addr); | |||
| auto lr = reinterpret_cast<T *>(inputs[2]->addr); | |||
| auto accum = reinterpret_cast<T *>(inputs[3]->addr); | |||
| auto momentum = reinterpret_cast<T *>(inputs[4]->addr); | |||
| auto stat = reinterpret_cast<T *>(inputs[5]->addr); | |||
| size_t elem_num = inputs[0]->size / sizeof(float); | |||
| auto task = [&](size_t start, size_t end) { | |||
| for (size_t i = start; i < end; i++) { | |||
| T grad_new = grad[i]; | |||
| if (weight_decay_ > 0) { | |||
| grad_new += param[i] * static_cast<T>(weight_decay_); | |||
| } | |||
| if (momentum[0] > static_cast<T>(0)) { | |||
| if (stat[i] > static_cast<T>(0)) { | |||
| accum[i] = grad_new; | |||
| stat[i] = static_cast<T>(0); | |||
| } else { | |||
| accum[i] = accum[i] * momentum[0] + static_cast<T>(1.0 - dampening_) * grad_new; | |||
| } | |||
| if (nesterov_) { | |||
| grad_new += accum[i] * momentum[0]; | |||
| } else { | |||
| grad_new = accum[i]; | |||
| } | |||
| } | |||
| param[i] -= lr[0] * grad_new; | |||
| } | |||
| }; | |||
| CPUKernelUtils::ParallelFor(task, elem_num); | |||
| return true; | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,67 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SGD_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SGD_CPU_KERNEL_H_ | |||
| #include <thread> | |||
| #include <vector> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class SGDCPUKernel : public CPUKernel { | |||
| public: | |||
| SGDCPUKernel() = default; | |||
| ~SGDCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> & /*workspace*/, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| private: | |||
| static void CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||
| float dampening_; | |||
| float weight_decay_; | |||
| bool nesterov_{true}; | |||
| }; | |||
| MS_REG_CPU_KERNEL_T(SGD, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| SGDCPUKernel, float); | |||
| MS_REG_CPU_KERNEL_T(SGD, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddOutputAttr(kNumberTypeFloat16), | |||
| SGDCPUKernel, float16); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif | |||
| @@ -2704,7 +2704,7 @@ class SGD(PrimitiveWithCheck): | |||
| float16 nor float32. | |||
| Supported Platforms: | |||
| ``Ascend`` ``GPU`` | |||
| ``Ascend`` ``GPU`` ``CPU`` | |||
| Examples: | |||
| >>> sgd = ops.SGD() | |||
| @@ -0,0 +1,72 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.nn import Dense | |||
| from mindspore.nn import TrainOneStepCell, WithLossCell | |||
| from mindspore.nn.optim import SGD | |||
| from mindspore.ops import operations as P | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
| class NetSGD(nn.Cell): | |||
| def __init__(self): | |||
| super(NetSGD, self).__init__() | |||
| self.batch_size = 1 | |||
| self.reshape = P.Reshape() | |||
| weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01) | |||
| self.fc1 = Dense(16, 10, weight_init=weight) | |||
| def construct(self, input_x): | |||
| output = self.reshape(input_x, (self.batch_size, -1)) | |||
| output = self.fc1(output) | |||
| return output | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_SGD(): | |||
| epoch = 3 | |||
| net = NetSGD() | |||
| learning_rate = 0.1 | |||
| momentum = 0.9 | |||
| dampening = 0.0 | |||
| weight_decay = 0.0 | |||
| nesterov = True | |||
| loss_scale = 1.0 | |||
| optimizer = SGD(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum, dampening, | |||
| weight_decay, nesterov, loss_scale) | |||
| criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||
| net_with_criterion = WithLossCell(net, criterion) | |||
| train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer | |||
| train_network.set_train() | |||
| losses = [] | |||
| for _ in range(epoch): | |||
| data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01) | |||
| label = Tensor(np.array([0]).astype(np.int32)) | |||
| loss = train_network(data, label) | |||
| losses.append(loss.asnumpy()) | |||
| last_loss = 100.0 | |||
| for loss in losses: | |||
| assert last_loss > loss | |||
| last_loss = loss | |||