| @@ -0,0 +1,88 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/cpu/sgd_cpu_kernel.h" | |||||
| #include <thread> | |||||
| #include <vector> | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| namespace { | |||||
| constexpr size_t kInputSize = 6; | |||||
| constexpr size_t kOutputSize = 1; | |||||
| } // namespace | |||||
| template <typename T> | |||||
| void SGDCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) { | |||||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||||
| dampening_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "dampening"); | |||||
| weight_decay_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "weight_decay"); | |||||
| nesterov_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "nesterov"); | |||||
| } | |||||
| template <typename T> | |||||
| void SGDCPUKernel<T>::CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) { | |||||
| // inputs: params, grad, lr, accum, momentum, stat | |||||
| if (inputs.size() != kInputSize) { | |||||
| MS_LOG(EXCEPTION) << "Input number is " << inputs.size() << ", but SGD needs 6 inputs."; | |||||
| } | |||||
| // output: param | |||||
| if (outputs.size() != kOutputSize) { | |||||
| MS_LOG(EXCEPTION) << "Output number is " << outputs.size() << ", but SGD needs 1 outputs."; | |||||
| } | |||||
| } | |||||
| template <typename T> | |||||
| bool SGDCPUKernel<T>::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> & /*workspace*/, | |||||
| const std::vector<AddressPtr> &outputs) { | |||||
| CheckParam(inputs, outputs); | |||||
| auto param = reinterpret_cast<T *>(inputs[0]->addr); | |||||
| auto grad = reinterpret_cast<T *>(inputs[1]->addr); | |||||
| auto lr = reinterpret_cast<T *>(inputs[2]->addr); | |||||
| auto accum = reinterpret_cast<T *>(inputs[3]->addr); | |||||
| auto momentum = reinterpret_cast<T *>(inputs[4]->addr); | |||||
| auto stat = reinterpret_cast<T *>(inputs[5]->addr); | |||||
| size_t elem_num = inputs[0]->size / sizeof(float); | |||||
| auto task = [&](size_t start, size_t end) { | |||||
| for (size_t i = start; i < end; i++) { | |||||
| T grad_new = grad[i]; | |||||
| if (weight_decay_ > 0) { | |||||
| grad_new += param[i] * static_cast<T>(weight_decay_); | |||||
| } | |||||
| if (momentum[0] > static_cast<T>(0)) { | |||||
| if (stat[i] > static_cast<T>(0)) { | |||||
| accum[i] = grad_new; | |||||
| stat[i] = static_cast<T>(0); | |||||
| } else { | |||||
| accum[i] = accum[i] * momentum[0] + static_cast<T>(1.0 - dampening_) * grad_new; | |||||
| } | |||||
| if (nesterov_) { | |||||
| grad_new += accum[i] * momentum[0]; | |||||
| } else { | |||||
| grad_new = accum[i]; | |||||
| } | |||||
| } | |||||
| param[i] -= lr[0] * grad_new; | |||||
| } | |||||
| }; | |||||
| CPUKernelUtils::ParallelFor(task, elem_num); | |||||
| return true; | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,67 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SGD_CPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SGD_CPU_KERNEL_H_ | |||||
| #include <thread> | |||||
| #include <vector> | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class SGDCPUKernel : public CPUKernel { | |||||
| public: | |||||
| SGDCPUKernel() = default; | |||||
| ~SGDCPUKernel() override = default; | |||||
| void InitKernel(const CNodePtr &kernel_node) override; | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> & /*workspace*/, | |||||
| const std::vector<AddressPtr> &outputs) override; | |||||
| private: | |||||
| static void CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||||
| float dampening_; | |||||
| float weight_decay_; | |||||
| bool nesterov_{true}; | |||||
| }; | |||||
| MS_REG_CPU_KERNEL_T(SGD, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddOutputAttr(kNumberTypeFloat32), | |||||
| SGDCPUKernel, float); | |||||
| MS_REG_CPU_KERNEL_T(SGD, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddOutputAttr(kNumberTypeFloat16), | |||||
| SGDCPUKernel, float16); | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif | |||||
| @@ -2704,7 +2704,7 @@ class SGD(PrimitiveWithCheck): | |||||
| float16 nor float32. | float16 nor float32. | ||||
| Supported Platforms: | Supported Platforms: | ||||
| ``Ascend`` ``GPU`` | |||||
| ``Ascend`` ``GPU`` ``CPU`` | |||||
| Examples: | Examples: | ||||
| >>> sgd = ops.SGD() | >>> sgd = ops.SGD() | ||||
| @@ -0,0 +1,72 @@ | |||||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import pytest | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.nn import Dense | |||||
| from mindspore.nn import TrainOneStepCell, WithLossCell | |||||
| from mindspore.nn.optim import SGD | |||||
| from mindspore.ops import operations as P | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| class NetSGD(nn.Cell): | |||||
| def __init__(self): | |||||
| super(NetSGD, self).__init__() | |||||
| self.batch_size = 1 | |||||
| self.reshape = P.Reshape() | |||||
| weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01) | |||||
| self.fc1 = Dense(16, 10, weight_init=weight) | |||||
| def construct(self, input_x): | |||||
| output = self.reshape(input_x, (self.batch_size, -1)) | |||||
| output = self.fc1(output) | |||||
| return output | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu | |||||
| @pytest.mark.env_onecard | |||||
| def test_SGD(): | |||||
| epoch = 3 | |||||
| net = NetSGD() | |||||
| learning_rate = 0.1 | |||||
| momentum = 0.9 | |||||
| dampening = 0.0 | |||||
| weight_decay = 0.0 | |||||
| nesterov = True | |||||
| loss_scale = 1.0 | |||||
| optimizer = SGD(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum, dampening, | |||||
| weight_decay, nesterov, loss_scale) | |||||
| criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||||
| net_with_criterion = WithLossCell(net, criterion) | |||||
| train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer | |||||
| train_network.set_train() | |||||
| losses = [] | |||||
| for _ in range(epoch): | |||||
| data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01) | |||||
| label = Tensor(np.array([0]).astype(np.int32)) | |||||
| loss = train_network(data, label) | |||||
| losses.append(loss.asnumpy()) | |||||
| last_loss = 100.0 | |||||
| for loss in losses: | |||||
| assert last_loss > loss | |||||
| last_loss = loss | |||||